Plant Soil Environ., 2017, 63(6):282-287 | DOI: 10.17221/220/2017-PSE

Effect of zinc fertilisation on yield and selected qualitative parameters of broccoliOriginal Paper

Miroslav ©LOSÁR*,1, Ivana MEZEYOVÁ1, Alľbeta HEGEDÜSOVÁ1, Alena ANDREJIOVÁ1, Peter KOVÁČIK2, Tomáą LO©ÁK3, Tomáą KOPTA4, Anna J. KEUTGEN5
1 Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
2 Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
3 Faculty of Regional Development and International Studies, Mendel University in Brno, Brno, Czech Republic
4 Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
5 Division of Vegetables and Ornamentals, University of Natural Resources and Life Sciences Vienna, Vienna, Austria

Three treatments were used in two-year (2014-2015) field experiments with broccoli cv. Bejo 2914 F1: (1) untreated control; (2) Zn0.75 - Zinkuran SC as foliar fertiliser at the rate of 0.75 L/ha (375 g Zn/ha); (3) Zn1.50 - Zinkuran SC as foliar fertiliser at the rate of 1.50 L/ha (750 g Zn/ha). The statistically significant differences of individual broccoli parameters were found after zinc applications. In both experimental years the yield of broccoli with additional zinc fertilisation was significantly higher by about 8.2-14.4% (Zn0.75) and 12.5-17.5% (Zn1.50), respectively, than in the control. Foliar zinc application significantly increased the sulforaphane content in broccoli florets by about 19.8-32.9% (Zn0.75) and 37.2-49.3% (Zn1.50), respectively, compared to the control. By contrast, the content of total polyphenolics (of about 9.0-12.5% (Zn0.75) and 33.9-35.2% (Zn1.50)) and antioxidant activity (Zn0.75 (3.7-4.2%) and Zn1.50 (5.3-7.0)) decreased as a result of zinc fertilisation. The investigations pointed to zinc as a very important micronutrient with strong influence on the yield and chosen qualitative, health promoting parameters of broccoli.

Keywords: foliar application; Brassica oleracea; vegetable; glucoraphanin; polyphenols

Published: June 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
©LOSÁR M, MEZEYOVÁ I, HEGEDÜSOVÁ A, ANDREJIOVÁ A, KOVÁČIK P, LO©ÁK T, et al.. Effect of zinc fertilisation on yield and selected qualitative parameters of broccoli. Plant Soil Environ.. 2017;63(6):282-287. doi: 10.17221/220/2017-PSE.
Download citation

References

  1. Abd El-All H.M. (2014): Improving growth, yield, quality and sulphoraphane content as anticancer of broccoli (Brassica oleracea L. var. italica) plants by some fertilization treatments. Middle East Journal of Agriculture Research, 3: 13-19.
  2. Barłóg P., Nowacka A., Błaszyk R. (2016): Effect of zinc band application on sugar beet yield, quality and nutrient uptake. Plant, Soil and Environment, 62: 30-35. Go to original source...
  3. Branca F., Ferrari M. (2002): Impact of micronutrient deficiencies on growth: The stunting syndrome. Annals of Nutrition and Metabolism, 46: 8-17. Go to original source...
  4. Brand-Williams W., Cuvelier M.E., Berset C. (1995): Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28: 25-30. Go to original source...
  5. Burmeister W.P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. (1997): The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure, 5: 663-675. Go to original source...
  6. Cabello-Hurtado F., Gicquel M., Esnault M.-A. (2012): Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chemistry, 132: 1003-1009. Go to original source...
  7. Cartea M.E., Velasco P. (2008): Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochemistry Reviews, 7: 213-229. Go to original source...
  8. Coolong T.W., Randle W.M. (2004): Zinc availability in hydroponic culture influences glucosinolate concentrations in Brassica rapa. HortScience, 39: 84-86. Go to original source...
  9. Denre M., Bandopadhyay P.K., Chakravarty A., Pal S., Bhattacharya A. (2014a): Effect of foliar application of humic acid, zinc and boron on biochemical changes related to productivity of pungent pepper (Capsicum annuum L.). African Journal of Plant Science, 8: 320-335. Go to original source...
  10. Denre M., Bandopadhyay P.K., Chakravarty A., Pal S., Bhattacharya A. (2014b): Influence of foliar applications of chelator and micronutrients on antioxidants in green chilli. International Journal of Nutrition and Metabolism, 6: 18-27. Go to original source...
  11. Denre M., Bhattacharya A., Pal S., Chakravarty A., Chattopadhyay A., Mazumdar D. (2016): Effect of foliar application of micronutrients on antioxidants and pungency in onion. Notulae Scientia Biologicae, 8: 373-379. Go to original source...
  12. Gawlik-Dziki U. (2008): Effect of hydrothermal treatment on the antioxidant properties of broccoli (Brassica oleracea var. botrytis italica) florets. Food Chemistry, 109: 393-401. Go to original source...
  13. Harangozo L. (2016): Risk elements in selected types of vegetables. Potraviniarstvo, Slovak Journal of Food Sciences, 10: 625-630. Go to original source...
  14. Khähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.-P., Pihlaja K., Kujala T.S., Heinonen M. (1999): Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47: 3954-3962. Go to original source...
  15. Lachman J., Proněk D., Hejtmánková A., Dudjak J., Pivec V., Faitová K. (2003): Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Horticultural Science, 30: 142-147. Go to original source...
  16. Liang H., Yuan Q.P., Xiao Q. (2006): Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed. Journal of Molecular Catalysis B: Enzymatic, 43: 19-22. Go to original source...
  17. Moiseeva E.P., Almeida G.M., Jones G.D., Manson M.M. (2007): Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Molecular Cancer Therapeutic, 6: 3071-3079. Go to original source... Go to PubMed...
  18. Moreno D.A., Carvajal M., López-Berenguer C., García-Viguera C. (2006): Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41: 1508-1522. Go to original source... Go to PubMed...
  19. Pék Z., Daood H., Nagyné M.G., Neményi A., Helyes L. (2013): Effect of environmental conditions and water status on the bioactive compounds of broccoli. Central European Journal of Biology, 8: 777-787. Go to original source...
  20. Podsedek A. (2007): Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT - Food Science and Technology, 40: 1-11. Go to original source...
  21. Potarzycki J., Grzebisz W. (2009): Effect of zinc foliar application on grain yield of maize and its yielding components. Plant, Soil and Environment, 55: 519-527. Go to original source...
  22. Sahito H.A., Solangi A.W., Lanjar A.G., Solangi A.H., Khuhro S.A. (2014): Effect of micronutrient (zinc) on growth and yield of mustard varieties. Asian Journal of Agriculture and Biology, 2: 105-113.
  23. Salama Z.A., Gaafar A.A., El Fouly M.M. (2015): Genotypic variations in phenolic, flavonoids and their antioxidant activities in maize plants treated with Zn (II) HEDTA grown in salinized media. Agricultural Sciences, 6: 397-405. Go to original source...
  24. Sivakumar G., Aliboni A., Bacchetta L. (2007): HPLC screening of anti-cancer sulforaphane from important European Brassica species. Food Chemistry, 104: 1761-1764. Go to original source...
  25. ©losár M., Uher A., Andrejiová A., Juríková T. (2016): Selected yield and qualitative parameters of broccoli in dependence on nitrogen, sulfur, and zinc fertilization. Turkish Journal of Agriculture and Forestry, 40: 465-473. Go to original source...
  26. Smiechowska A., Bartoszek A., Namie¶nik J. (2008): Cancer chemopreventive agents: Glucosinolates and their decomposition products in white cabbage (Brassica oleracea var. capitata). Postepy Higieny i Medycyny Doswiadczalnej, 62: 125-140.
  27. Tolrá R.P., Poschenrieder C., Alonso R., Barceló D., Barceló J. (2001): Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytologist, 151: 621-626. Go to original source... Go to PubMed...
  28. Yang R.Q., Guo L.P., Jin X.L., Shen C., Zhou Y.L., Gu Z.X. (2015): Enhancement of glucosinolate and sulforaphane formation of broccoli sprouts by zinc sulphate via its stress effect. Journal of Functional Foods, 13: 345-349. Go to original source...
  29. Zang Y.X., Kim H.U., Kim J.A., Lim M.H., Jin M., Lee S.C., Kwon S.J., Lee S.I., Hong J.K., Park T.H., Mun J.H., Seol Y.J., Hong S.B., Park B.S. (2009): Genome-wide identification of glucosinolates synthesis genes in Brassica rapa. FEBS Journal, 276: 3559-3574. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.