J. For. Sci., 2023, 69(8):348-359 | DOI: 10.17221/191/2022-JFS

Sap flow modelling based on global radiation and canopy parameters derived from a digital surface modelOriginal Paper

Tomáš Mikita, Zdeněk Patočka, Elizaveta Avoiani
Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Sap flow represents water transport from roots to leaves through the xylem and is used to describe tree transpiration. This paper proposed and tested a procedure to estimate sap flow by calculating global radiation in a digital model of the tree canopy surface obtained by unmanned aerial vehicle imaging. The sap flow of nine trees was continuously measured in the field. In the digital surface model, individual canopies were automatically delineated, their parameters were determined and the global radiation incident on their surface on specific days was calculated. A polynomial relationship was found between sap flow and the calculated incident solar radiation during the morning hours with a coefficient of determination of 0.98, as well as a linear relationship between the decrease in radiation and sap flow during the afternoon with a correlation coefficient of 0.99. Using the Random Forest machine learning method, a model predicting the sap flow of the trees was created based on the global radiation and canopy parameters determined from the digital surface model of tree canopies. The resulting model was deployed on additional days and compared to field measurements of sap flow, achieving a correlation coefficient of 0.918. In addition, two linear regression models were created for a tree group, achieving coefficients of determination of 0.66 and 0.90.

Keywords: GIS; Random Forest; remote sensing; solar radiation; transpiration; unmanned aircraft vehicle (UAV)

Received: December 22, 2022; Accepted: June 19, 2023; Published: August 25, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mikita T, Patočka Z, Avoiani E. Sap flow modelling based on global radiation and canopy parameters derived from a digital surface model. J. For. Sci.. 2023;69(8):348-359. doi: 10.17221/191/2022-JFS.
Download citation

References

  1. Allen R.G, Pereira L.S, Raes D., Smith M. (1998): Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome, FAO: 300.
  2. Baker J.M., van Bavel C.H.M. (1987): Measurement of mass flow of water in the stems of herbaceous plants. Plant, Cell & Environment, 10: 777-782. Go to original source...
  3. Barrett D.J., Hatton T.J., Ash J.E., Ball C.M. (1996): Transpiration by trees from contrasting forest types. Australian Journal of Botany, 44: 249-263. Go to original source...
  4. Bond B.J., Jones J.A, Moore G., Phillips N., Post D., McDonnell J.J. (2002): The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin. Hydrological Processes, 16: 1671-1677. Go to original source...
  5. Brenner C., Thiem C.E., Wizemann H.D., Bernhardt M., Schulz K. (2017): Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system. International Journal of Remote Sensing, 38: 3003-3026. Go to original source... Go to PubMed...
  6. Bužková R., Acosta M., Dařenová E., Pokorný R., Pavelka M. (2015): Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees, 29: 333-343. Go to original source...
  7. Caspari H.W., Green S.R., Edwards W.R.N. (1993): Transpiration of well-watered and water-stressed Asian pear trees as determined by lysimetry, heat-pulse and estimated by a Penman-Monteith model. Agricultural and Forest Meteorology, 67: 13-27. Go to original source...
  8. Choi Y., Suh J., Kim S.M. (2019): GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences, 9: 1960. Go to original source...
  9. Čermák J., Deml M. (1974): Method of water transport measurements in woody species, especially in adult trees (in Czech). Patent (Certification of authorship) CSFR, 155622: 5997-1972.
  10. Čermák J., Kučera J., Nadezhdina N. (2004): Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529-546. Go to original source...
  11. Dou X., Yang Y. (2018): Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148: 95-106. Go to original source...
  12. Ellsäßer F., Stiegler C., Röll A., June T., Knohl A.; Hölscher D. (2020): Predicting evapotranspiration from drone-based thermography - A method comparison in a tropical oil palm plantation. Biogeosciences, 18: 861-872. Go to original source...
  13. EMS (2018): Sap flow system EMS 81. User's manual - 2nd issue. Available at: http://www.emsbrno.cz/p.axd/en/Sap.flow.system.EMS81.SDI_t_12.html (accessed Dec 22, 2022)
  14. ESRI (2020): An overview of the Solar Radiation toolset. Available at: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm (accessed Dec 19, 2020).
  15. Feng Y., Cui N., Gong D., Zhang Q., Zhao L. (2017): Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193: 163-173. Go to original source...
  16. Fu P. (2000): A geometric solar radiation model with applications in landscape ecology. [Ph.D. Thesis.] Lawrence, University of Kansas.
  17. Granier A. (1985): A new method of sap flow measurement in tree stems. Annales des Sciences Forestières, 42: 193-200. Go to original source...
  18. Gribovszki Z., Kalicz P., Szilágyi J., Kucsara M. (2008): Riparian zone evapotranspiration from diurnal groundwater level fluctuations. Journal of Hydrology, 349: 6-17. Go to original source...
  19. Hofierka J., Šúri M. (2002): The solar radiation model for Open source GIS: Implementation and applications. In: Proceedings of the Open Source GIS - GRASS Users Conference 2002, Trento, Sept 11-13, 2002: 51-70.
  20. Huber B. (1932): Beobachtung und Messung pflanzlicher Saftströme. Berichte der Botanischen Gesellschaft, 50: 89-109. (in German) Go to original source...
  21. Janata P., Klimánek M., Lukas V., Machala M., Mikita T., Nedorost J., Ždímal V. (2016): Využití dálkově pilotovaných leteckých systémů v zemědělství, lesnictví a krajinné ekologii. 1st Ed. Brno, Mendelova univerzita v Brně: 130. (in Czech)
  22. Kučera J., Čermák J., Penka M. (1977): Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum, 19: 413-420. Go to original source...
  23. Kupec P., Deutscher J. (2017): Influence of stand transpiration on diurnal streamflow in the recipient in an upland forested microwatershed during precipitation-free periods. Zprávy lesnického výzkumu, 62: 234-241. (in Czech)
  24. Loustau D., Berbigier P., Roumagnac P., Arruda-Pacheco C., David J.S., Ferreira M.I., Pereira J.S., Tavares R. (1996): Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia, 107: 33-42. Go to original source... Go to PubMed...
  25. Martin T.A. (1999): Winter season tree sap flow and stand transpiration in an intensively-managed loblolly and slash pine plantation. Journal of Sustainable Forestry, 10: 155-163. Go to original source...
  26. Mikita T., Klimánek M., Cibulka M. (2013): Evaluation of airborne laser scanning data for tree parameters and terrain modelling in forest environment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61: 1339-1347. Go to original source...
  27. Nadezhdina N., Čermák J., Nadezhdin V. (1998): Heat field deformation method for sap flow measurements. In: Proceedings of 4th International Workshop on Measuring Sap Flow in Intact Plants, Židlochovice, Oct 3-5, 1998: 72-92.
  28. Niu H., Hollenbeck D., Zhao T., Wang D., Chen Y. (2020): Evapotranspiration estimation with small UAVs in precision agriculture. Sensors, 20: 6427. Go to original source... Go to PubMed...
  29. Oogathoo S., Houle D., Duchesne L., Kneeshaw D. (2020): Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agricultural and Forest Meteorology, 291: 108063. Go to original source...
  30. Pan S., Pan N., Tian H., Friedlingstein P., Sitch S., Shi H., Arora V.K., Haverd V., Jain A.K., Kato E., Lienert S., Lombardozzi D., Nabel J.E.M.S., Ottlé C., Poulter B., Zaehle S., Running S.W. (2020): Evaluation of global terrestrial evapotranspiration by state-of-the-art approaches in remote sensing, machine learning, and land surface models. Hydrology and Earth System Sciences, 24: 1485-1509. Go to original source...
  31. Pokorný R., Šalanská P. (2001): Sap flux of dominant trees under low soil water availability. Beskydy, 14: 99-106.
  32. Rich P.M., Dubayah R., Hetrick W.A., Saving S.C. (1994): Using viewshed models to calculate intercepted solar radiation: Applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers: 524-529.
  33. Rich P.M., Fu. P. (2000): Topoclimatic habitat models. In: Proceedings of the 4th International Conference on Integrating GIS and Environmental Modeling, Banff, Sept 2-8, 2000: 14.
  34. Sakuratani T. (1981): A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology, 37: 9-17. Go to original source...
  35. Schiller G., Cohen Y. (1995): Water regime of a pine forest under a Mediterranean climate. Agricultural and Forest Meteorology, 74: 181-193. Go to original source...
  36. Shan J., Toth C.K. (2017): Topographic Laser Ranging and Scanning. 2nd Ed. Boca Raton, CRC Press: 654. Go to original source...
  37. Vincent L., Soille P. (1991): Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13: 583-598. Go to original source...
  38. Wan L., Zhang Q., Cheng L., Liu Y, Qin S., Xu J., Wang Y. (2023): What determines the time lags of sap flux with solar radiation and vapor pressure deficit? Agricultural and Forest Meteorology, 333: 109414. Go to original source...
  39. Wondzell S.M., Gooseff M.N., McGlynn B.L. (2009): An analysis of alternative conceptual models relating hyporheic exchange flow to diel fluctuations in discharge during baseflow recession. Hydrological Processes, 24: 686-694. Go to original source...
  40. Wullschleger S.D., Meinzer F.C., Vertessy R.A. (1998): A review of whole-plant water use studies in tree. Tree Physiology, 18: 499-512. Go to original source... Go to PubMed...
  41. Xu J., Ma L. (2007): Relationship between effective solar radiation and sap flow process during an entire growing season in Western Mountains of Beijing. Forestry Studies in China, 9: 251-255. Go to original source...
  42. Zhang Q., Manzoni S., Katul G., Porporato A., Yang D. (2014): The hysteretic evapotranspiration-vapor pressure deficit relation. Journal of Geophysical Research, 119: 125-140. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.