Czech J. Genet. Plant Breed., 2017, 53(1):30-36 | DOI: 10.17221/130/2015-CJGPB

Expression profiling of certain MADS-box genes in Arabidopsis thaliana plant treated with silver nanoparticlesOriginal Paper

Zainab Majed ALMUTAIRI*
Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

Silver nanoparticles (AgNPs) have been shown to enhance seed germination and plant growth. In this study, we examined the plant response to AgNP dosage using a model plant, Arabidopsis thaliana. Seedlings were treated with different concentrations of AgNPs. Seedling fresh and dry weights were measured for all treatments. The exposure of plants to 1 mg/l AgNPs resulted in a significant increase in seedling fresh and dry weights compared with control plants, although the exposure to lower and higher concentrations resulted in a decrease in fresh and dry weights. Expression profiling for 22 MADS-box genes was carried out using quantitative real-time PCR (qRT-PCR). Among the investigated MADS-box genes, eight genes were upregulated and four genes were downregulated at each of the AgNP concentrations, 0.1 and 1 mg/l. Revealing the effects of AgNPs on the expression of MADS-box genes will increase our knowledge of their role before implementing a large-scale agricultural utilization of AgNPs in the improvement of plant growth and development.

Keywords: AgNPs; molecular mechanisms; plant growth; qRT-PCR

Published: March 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ALMUTAIRI ZM. Expression profiling of certain MADS-box genes in Arabidopsis thaliana plant treated with silver nanoparticles. Czech J. Genet. Plant Breed.. 2017;53(1):30-36. doi: 10.17221/130/2015-CJGPB.
Download citation

References

  1. Almutairi Z.M., Alharbi A.A. (2015): Effect of silver nanoparticles on seed germination of crop plants. Journal of Advances in Agriculture, 4: 283-288. Go to original source...
  2. Barrena R., Casals E., Colon J., Font X., Sanchez A., Puntes V. (2009): Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75: 850-857. Go to original source... Go to PubMed...
  3. Burgeff C., Liljegren S.J., Tapia-López R., Yanofsky M.F., Alvarez- Buylla E.R. (2002): MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta, 214: 365-372. Go to original source... Go to PubMed...
  4. Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. (2005): Genomewide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139: 5-17. Go to original source... Go to PubMed...
  5. De Bodt S., Raes J., Florquin K., Rombauts S., Rouzé P., Theissen G., Van de Peer Y. (2003): Genome wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. Journal of Molecular Evolution, 56: 573-586. Go to original source... Go to PubMed...
  6. Dorca-Fornell C., Gregis V., Grandi V., Coupland G., Colombo L., Kater M.M. (2011): The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant Journal, 67: 1006-1017. Go to original source... Go to PubMed...
  7. Ferrándiz C., Liljegren S.J., Yanofsky M.F. (2000): Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 289: 436-438. Go to original source... Go to PubMed...
  8. Gubbins E.J., Batty L.C., Lead J.R. (2011): Phytotoxicity of silver nanoparticles to Lemna minor L. Environment Pollution, 159: 1551-1559. Go to original source... Go to PubMed...
  9. Han P., García-Ponce B., Fonseca-Salazar G., Alvarez-Buylla E.R., Yu H. (2008): AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT independent photoperiod pathway. Plant Journal, 55: 253-265. Go to original source... Go to PubMed...
  10. Hsu H.F., Huang C.H., Chou L.T., Yang C.H. (2003): Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant and Cell Physiology, 44: 783-794. Go to original source... Go to PubMed...
  11. Kaveh R., Li Y.S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. (2013): Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science and Technology, 47: 10637-10644. Go to original source... Go to PubMed...
  12. Kim D.-H., Sung S. (2010): The plant homeo domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proceedings of the National Academy of Sciences of USA, 107: 17029-17034. Go to original source... Go to PubMed...
  13. Kofuji R., Sumikawa N., Yamasaki M., Kondo K., Ueda K., Ito M., Hasebe M. (2003): Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Molecular Biology and Evolution, 20: 1963-1977. Go to original source... Go to PubMed...
  14. Kohan-Baghkheirati E., Geisler-Lee J. (2015): Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials, 5: 436-467. Go to original source... Go to PubMed...
  15. Köhler C., Page D.R., Gagliardini V., Grossniklaus U. (2005): The Arabidopsis thaliana MEDEA polycomb group protein controls expression of PHERES1 by parental imprinting. Nature Genetics, 37: 28-30. Go to original source... Go to PubMed...
  16. Kumari M., Mukherjee A., Chandrasekaran N. (2009): Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407: 5243-5246. Go to original source... Go to PubMed...
  17. Li D., Liu C., Shen L., Wu Y., Chen H., Robertson M., Helliwell C.A., Ito T., Meyerowitz E., Yu H. (2008): A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell, 15: 110-120. Go to original source... Go to PubMed...
  18. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression using real time quantitative PCR and the 2-ΔΔCt method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  19. Ma X., Geiser-Lee J., Deng Y., Kolmakov A. (2010): Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408: 3053-3061. Go to original source... Go to PubMed...
  20. Matias-Hernandez L., Battaglia R., Galbiati F., Rubes M., Eichenberger C., Grossniklaus U., Kater M.M., Colombo L. (2010): VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell, 22: 1702-1715. Go to original source... Go to PubMed...
  21. Michaels S.D., Amasino R.M. (1999): FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11: 949-956. Go to original source...
  22. Michaels S.D., Ditta G., Gustafson-Brown C., Soraya P., Yanofsky M., Amasino R.M. (2003): AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant Journal, 33: 867-874. Go to original source... Go to PubMed...
  23. Moreno-Risueno M.A., Van Norman J.M., Moreno A., Zhang J., Ahnert S.E., Benfey P.N. (2010): Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science, 329: 1306-1311. Go to original source... Go to PubMed...
  24. Nowack B. (2010): Nanosilver revisited downstream. Science, 330: 1054-1055. Go to original source... Go to PubMed...
  25. Pelaz S., Ditta G.S., Baumann E., Wisman E., Yanofsky M.F. (2000): B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405: 200-203. Go to original source... Go to PubMed...
  26. Qian H., Peng X., Han X., Ren J., Sun L., Fu Z. (2013): Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Science, 25: 1947-1955. Go to original source... Go to PubMed...
  27. Ratcliffe O.J., Kumimoto R.W., Wong B.J., Riechmann J.L. (2003): Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell, 15: 1159-1169. Go to original source... Go to PubMed...
  28. Salama H.M.H. (2012): Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3: 190-197.
  29. Savithramma N., Ankanna S., Bhumi G. (2012): Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision, 2: 61-68.
  30. Scortecci K.C., Michaels S.D., Amasino R.M. (2001): Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant Journal, 26: 229-236. Go to original source... Go to PubMed...
  31. Sharma P., Bhatt D., Zaidi M.G., Saradhi P.P., Khanna P.K., Arora S. (2012): Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167: 2225-2233. Go to original source... Go to PubMed...
  32. Stampoulis D., Sinha S.K., White J.C. (2009): Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43: 9473-9479. Go to original source... Go to PubMed...
  33. Sundström J.F., Nakayama N., Glimelius K., Irish V.F. (2006): Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant Journal, 46: 593-600. Go to original source... Go to PubMed...
  34. Syu Y.Y., Hung J.H., Chen J.C., Chuang H.W. (2014): Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83: 57-64. Go to original source... Go to PubMed...
  35. Tapia-López R., García-Ponce B., Dubrovsky J.G., Garay-Arroyo A., Pérez- Ruíz R.V., Kim S.H., Acevedo F., Pelaz S., Alvarez-Buylla E.R. (2008): An AGAMOUSrelated MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology, 146: 1182-1192. Go to original source... Go to PubMed...
  36. Thiruvengadam M., Gurunathan S., Chung I.M. (2015): Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma, 252: 1031-1046. Go to original source... Go to PubMed...
  37. Wang J., Koo Y., Alexander A., Yang Y., Westerhof S., Zhang Q., Schnoor J.L., Colvin V.L., Braam J., Alvarez P.J.J. (2013): Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science and Technology, 47: 5442-5449. Go to original source... Go to PubMed...
  38. Yasur J., Rani P.U. (2013): Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research International, 20: 8636-8648. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.