Hort. Sci. (Prague), 2023, 50(2):127-141 | DOI: 10.17221/105/2021-HORTSCI

Modulation of nutritional and biochemical status of hydroponically grown Cucurbita pepo L. by Calcium Nitrate under saline conditionsOriginal Paper

Farhad Behtash1, Hanifeh Seyed Hajizadeh1, Bagher Tarighi1
1 Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

Salinity is one of the critical environmental factors that decreases the water availability and induces nutritional imbalance in crops. In order to study the effect of calcium nitrate [(Ca(NO3)2] in the nutrient solution under salinity conditions, an experiment was designed with different salinity (0, 50, and 100 mM) and Ca(NO3)2 (2, 3, and 4 mM) levels on Cucurbita pepo (zucchini). Based on the results, an increase in the salinity from 0 to 100 mM caused a decrease in the leaf potassium and calcium concentration, whereas the iron, magnesium and zinc concentrations increased. The most effective Ca(NO3)2 level in increasing the nutritional quality and yield of zucchini was 3 and 4 mM. Salinity at 50 and 100 mM significantly increased the leaf sodium concentration and leaf area as well as the leaf number per plant, while the application of both Ca(NO3)2 levels modulated the harmful effects of salinity. The amount of malondialdehyde (MDA), proline and hydrogen peroxide (H2O2) as well as the catalase (CAT) activity increased under the severe salinity conditions, whereas the application of 4 mM Ca(NO3)2 had the potential of removing the negative effects of severe salinity. The catalase activity increased along with the increase in the Ca(NO3)2 concentration, which was independent from the salinity level. However, the amount of proline, MDA and H2O2 decreased in plants fed with 3 and 4 mM Ca(NO3)2 compared to the control in the presence of salinity. These findings suggest that both the 3 and 4 mM concentrations of Ca(NO3)2 under 50 mM salinity could be used to improve the zucchini performance by maintaining the ion homeostasis and inducing the antioxidant defence system.

Keywords: nutritional balance; zucchini; antioxidant enzyme; NaCl, Ca(NO3)2; leaf area index

Accepted: January 31, 2023; Published: June 16, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Behtash F, Hajizadeh HS, Tarighi B. Modulation of nutritional and biochemical status of hydroponically grown Cucurbita pepo L. by Calcium Nitrate under saline conditions. Hort. Sci. (Prague). 2023;50(2):127-141. doi: 10.17221/105/2021-HORTSCI.
Download citation

References

  1. Achakzai A.K.K., Kayani S.A., Hanif A. (2010): Effect of salinity on uptake of micronutrients in sunflower at early vegetable stage. Pakistan Journal of Botany, 42: 129-139.
  2. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A. (2017): Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7: 18. Go to original source...
  3. Aebi M., Furter R., Prand F., Niederberger P., Hütter R. (1984): Structure and function of the TRP3 gene of Saccharomyces cerevisiae: Analysis of transcription, promoter sequence, and sequence coding for a glutamine amidotransferase. Current Genetics, 8: 165-172. Go to original source... Go to PubMed...
  4. Akladious S.A., Mohamed H.I. (2018): Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 236: 244-250. Go to original source...
  5. Akram N.A., Ashraf M., Al-Qurainy F. (2012): Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Scientia Horticulturae, 142: 1438. Go to original source...
  6. Amor N.B., Megdiche W., Jiménez A., Sevilla F., Abdelly C. (2010): The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress. Acta Physiologiae Plantarum, 32: 453-461. Go to original source...
  7. Arif M.R., Islam M.T., Robin A.H.K. (2019): Salinity stress alters root morphology and root hair traits in Brassica napus. Plants, 8: 192. Go to original source... Go to PubMed...
  8. Ashraf M., Harris P.J.C. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16. Go to original source...
  9. Assaha D.V., Ueda A., Saneoka H., Al-Yahyai R., Yaish M.W. (2017): The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8: 509. Go to original source... Go to PubMed...
  10. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  11. Cabrera R.I., Perdomo P. (2003): Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. Horticultural Science, 38: 533-536. Go to original source...
  12. Cachorro P., Ortiz A., Cerda A. (1993): Effects of saline stress and calcium on lipid composition in bean roots. Phytochemistry, 32: 1131-1136. Go to original source...
  13. Cheruth A.J., Azooz M.M. (2009): Exogenous calcium alters pigment composition, γ-glutamyl kinase and proline oxidase activities in salt-stressed Withania somnifera. Plant Omics Journal, 2: 85-90.
  14. Colla G., Rouphael Y., Cardarelli M., Tullio M., Rivera C.M., Rea E. (2007): Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44: 501-509. Go to original source...
  15. Davis J.M., Sanders D.C., Nelson P.V., Lengnick L., Sperry W.J. (2003): Boron improves the growth, yield, quality and nutrient content of tomato. Journal of the American Society for Horticultural Science, 128: 441-446. Go to original source...
  16. De Azevedo Neto A.D., Prisco J.T., Enéas-Filho J., Abreu C.E.B. de, Gomes-Filho E. (2006): Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56: 87-94. Go to original source...
  17. Dkhil B.B., Denden M. (2010): Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L.) Moench seeds. African Journal of Agricultural Research, 5: 1412-1418.
  18. Eimanifar A., Mohebbi F. (2007): Urmia Lake (Northwest Iran): A brief review. Saline Systems, 3: 5. Go to original source... Go to PubMed...
  19. Garg M., Tanaka H., Ishikawa N., Takata K., Yanaka M., Tsujimoto H. (2009): Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. Journal of Cereal Science, 50: 358-363. Go to original source...
  20. Giorgi C., Ito K., Lin H.K., Santangelo C., Wieckowski M.R., Lebiedzinska M., Pandolfi P.P. (2010): PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science, 330: 1247-1251. Go to original source... Go to PubMed...
  21. Grieve C.M., Grattan S.R., Maas E.V. (2012): Plant salt tolerance. ASCE Manual and Reports on Engineering Practice, 71: 405-459. Go to original source...
  22. Hernandez J.A., Aguilar A.N., Portillo B., Gomez E.L., Beneyto J.M., Garcia-Legaz M.F. (2003): The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Functional Plant Biology, 30: 1127-1137. Go to original source... Go to PubMed...
  23. Hocking P.J., Pate J.S. (1977): Mobilization of minerals to developing seeds of legumes. Annals of Botany, 41: 1259-1278. Go to original source...
  24. Hussain S., Khaliq A., Matloob A., Wahid M.A., Afzal I. (2013): Germination and growth response of three wheat cultivars to NaCl salinity. Soil & Environment, 32: 36-43.
  25. Kaya C., Higgs D. (2002): Calcium nitrate as a remedy for salt-stressed cucumber plants. Journal of Plant Nutrition, 25: 861-871. Go to original source...
  26. Kaya C., Kirnak H., Higgs D., Saltali K. (2002): Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93: 65-74. Go to original source...
  27. Keutgen A.J., Pawelzik E. (2008): Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111: 642-647. Go to original source...
  28. Khaled H., Fawy H.A. (2011): Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6: 21-29. Go to original source...
  29. Khan M.S.A., Hamid A., Karim M.A. (1997): Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 179: 163-169. Go to original source...
  30. Khanbabaloo N., Seyed Hajizadeh H., Behtash F. (2018): Effects of salinity on taste quality and biochemical traits of four tomato varieties (Solanum lycopersicum) grown under hydroponic conditions. Journal of Horticulture and Postharvest Research, 1: 15-26.
  31. Khoshgoftarmanesh A.H., Schulin R., Chaney R.L., Daneshbakhsh B., Afyuni M. (2010): Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30: 83-107. Go to original source...
  32. Lee S.H., Choi J.H., Kim W., Park Y.S., Gemma H. (2007): Effect of calcium chloride spray on peroxidase activity and stone cell development in pear fruit (Pyrus pyrifolia, Nnitaka). Japanese Society for Horticulture Science, 76: 191-196. Go to original source...
  33. Lester G.E., Grusak M.A. (2004): Field application of chelated calcium: Postharvest effects on cantaloupe and honeydew fruit quality. HortTechnology, 14: 29-38. Go to original source...
  34. Liu Y., Wang C., Yan J., Zhang W., Guan W., Lu X., Li S. (2014): Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnology for Biofuels, 7: 1-12. Go to original source... Go to PubMed...
  35. Lolaei A. (2012): Effect of calcium chloride on growth and yield of tomato under sodium chloride stress. Journal of Ornamental and Horticultural Plants, 2: 155-160.
  36. Maksimoviæ I., Putnik-Deliæ M., Gani I., Mariæ J., Ilin ®. (2010): Growth, ion composition, and stomatal conductance of peas exposed to salinity. Open Life Sciences, 5: 682-691. Go to original source...
  37. Marschner H. (1995): Mineral Nutrition of Higher Plants. 2nd Ed. London, Academic Press.
  38. Martinez-Ballesta M.C., Martinez V., Carvajal M. (2000): Regulation of water channel activity in whole roots of melon plants grown under saline conditions. Australian Journal of Plant Physiology, 27: 685-691. Go to original source...
  39. Massa D., Mattson N.S., Lieth H.J. (2009): Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: A Michaelis-Menten modelling approach. Plant and Soil, 318: 101-115. Go to original source...
  40. Mozafari H., Kalantari Kh.M. (2005): The evaluation of calcium ion (Ca2+) effects on improvement of morphological and biochemical parameters in Descurainia sophia under salt stress. Pajouhesh & Sazandegi, 11: 92-103.
  41. Munns R. (2002): Comparative physiology of salt and water stress. Plant Cell Environment, 25: 239-250. Go to original source... Go to PubMed...
  42. Munns R. (2005): Genes and salt tolerance: Bringing them together. Plant Physiology, 167: 645-663. Go to original source... Go to PubMed...
  43. Murillo-Amador B., Jones H.G., Kaya C., Aguilar R.L., García-Hernández J.L., Troyo-Diéguez E., Rueda-Puente E. (2006): Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany, 58: 188-196. Go to original source...
  44. Neill S., Desikan R., Hancock J. (2002): Hydrogen peroxide signaling. Current Opinion in Plant Biology, 5: 388-395. Go to original source... Go to PubMed...
  45. Nemati I., Moradi F., Gholizadeh S., Esmaeili M.A., Bihamta M.R. (2011): The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths, and roots of rice (Oryza sativa L.) seedlings. Plant, Soil and Environment, 57: 26-33. Go to original source...
  46. Oliveira F.D.A., Marques I.D.S., Targino A.D.O., Cordeiro C.J.X., de Oliveira M.K.T., Régis L.D.L., Freitas R.D.S. (2018): Effect of saline stress and calcium nitrate on lettuce grown on coconut fiber. Journal of Agricultural Science (Toronto), 10: 259-268. Go to original source...
  47. Parida A.K., Das A.B. (2005): Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 324-349. Go to original source... Go to PubMed...
  48. Parvin K., Ahamed K.U., Islam M.M., Haque Md. N. (2015): Response of tomato plant under salt stress: Role of exogenous calcium. Journal of Plant Sciences, 10: 222-233. Go to original source...
  49. Rahneshan Z., Nasibi F., Lakehal A., Bellini C. (2018): Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Acta Physiologiae Plantarum, 40: 1-13. Go to original source...
  50. Ren Z.H., Gao J.P., Li L.G., Cai X.L., Huang W., Chao D.Y., Lin H.X. (2005): A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37: 1141-1146. Go to original source... Go to PubMed...
  51. Romanova A.K., Mudrik V.A., Novichkova N.S., Demidova R.N., Polyakova V.A. (2002): Physiological and biochemical characteristics of sugar beet plants grown at an increased carbon dioxide concentration and at various nitrate doses. Russian Journal of Plant Physiology, 49: 204-210. Go to original source...
  52. Rouphael Y., Colla G., Battistelli A., Moscatello S., Proietti S., Rea E. (2004): Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. The Journal of Horticultural Science and Biotechnology, 79: 423-430. Go to original source...
  53. Rouphael Y., Cardarelli M., Rea E., Battistelli A., Colla G. (2006): Comparison of the sub irrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and nonsaline nutrient solution. Agricultural Water Management, 82: 99-117. Go to original source...
  54. Rus A.M., Estan M.T., Gisbert C., Garcia Sogo B., Serrano R., Caro M., Bolarin M.C. (2001): Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell and Environment, 24: 875-880. Go to original source...
  55. Salles J.S., de Lima A.H., Binotti F.F.D.S., Costa E., Binotti E.D., Salles J.S., de Souza A.F. (2019): Calcium nitrate priming increases the germination rate of eggplant seeds. Journal of Agricultural Science, 11: 181-186. Go to original source...
  56. Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2002): ACTCAT, a novel cis-acting element for proline and hypo osmolarity-responsive expression of the ProDHgene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130: 709-719. Go to original source... Go to PubMed...
  57. Shabala S., Demidchik V., Shabala L., Cuin T.A., Smith S.J., Miller A.J., Newman I.A. (2006): Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology, 141: 1653-1665. Go to original source... Go to PubMed...
  58. Sheidaei S., Heidari Sharifabad H., Hamidi A., Nourmohammadi G., Moghaddam A. (2014): Evaluation of soybean seed quality under long term storage. International Journal of Biosciences, 5: 214-219. Go to original source...
  59. Shi Q.H., Zhu Z.J., Khalid A.A., Liu H.Y., Yu J.Q. (2004): Effects of iso-osmotic salt stress on the activities of antioxidative enzymes, H+-ATPase and H+-PPase in tomato plants. Journal of Plant Physiology and Molecular Biology, 30: 311-316.
  60. Siddiqui M.H., Al-Whaibi M.H., Sakran A.M., Ali H.M., Basalah M.O., Faisal M., Alatar A., Al-Amri A.A. (2013): Calcium-induced amelioration of boron toxicity in radish. Journal of Plant Growth Regulation, 32: 61-71. Go to original source...
  61. Song G., Habibovic P., Bao C., Hu J., Van Blitterswijk C.A., Yuan H., Xu H.H. (2013): The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials, 34: 2167-2176. Go to original source... Go to PubMed...
  62. Sultan S.E. (2001): Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology, 82: 328-343. Go to original source...
  63. Tunçtürk M., Tunçtürk R., Yildirim B., Çiftçi V. (2011): Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10: 1827-1832.
  64. Turhan A., Kuscu H., Ozmen N., Asik B.B., Serbeci M.S., Seniz V. (2013): Alleviation of deleterious effects of salt stress by applications of supplementary potassium-calcium on spinach. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 63: 184-192. Go to original source...
  65. Tzortzakis N.G. (2008): Influence of NaCl and calcium nitrate on lettuce and endive growth using nutrient film technique. International Journal of Vegetable Science, 15: 44-56. Go to original source...
  66. Upchurch R.G. (2008): Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30: 967-977. Go to original source... Go to PubMed...
  67. Villora G., Moreno D.A., Pulgar G., Romero L. (2000): Salinity affects phosphorus uptake and partitioning in zucchini. Communications in Soil Science and Plant Analysis, 31: 501-507. Go to original source...
  68. Víllora G., Moreno D.A., Pulgar G., Romero L. (2000): Yield improvement in zucchini under salt stress: Determining micronutrient balance. Scientia Horticulturae, 86: 175-183. Go to original source...
  69. Wakeel A. (2013): Potassium-sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 176: 344-354. Go to original source...
  70. Yang T., ©imùnek J., Mo M., Mccullough-Sanden B., Shahrokhnia H., Cherchian S., Wu L. (2019): Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and-2D simulations. Soil and Tillage Research, 194: 104342. Go to original source...
  71. Yarnia M., Khorshidi M.B., Nasseri A., Hassanpanah D. (2009): Drought stress effects in different growth stages on potato cultivars. Potato Research, 53: 383-392. Go to original source...
  72. Yokoi S., Bressan R.A., Hasegawa P.M. (2002): Salt stress tolerance of plants. JIRCAS Working Report, 25-33.
  73. Zayed B.A., Salem A.K.M., El-Sharkawy H.M. (2011): Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7: 179-184.
  74. Zhang X.Y., Tan Y.L., Zhou D.F., Cao L.Y., Wu G.Y., Haile C.N., Kosten T.R. (2007): Disrupted antioxidant enzyme activity and elevated lipid peroxidation products in schizophrenic patients with tardive dyskinesia. Journal of Clinical Psychiatry, 68: 754-760. Go to original source... Go to PubMed...
  75. Zhu J.K. (2001): Plant salt tolerance. Trends in Plant Science, 6: 66-71. Go to original source... Go to PubMed...
  76. Zuazo V.D., Raya A.M., Ruiz J.A. (2004): Impact of salinity on the fruit yield of mango (Mangifera indica L. cv. 'Osteen'). European Journal of Agronomy, 21: 323-334. Go to original source...
  77. Zushi K., Matsuzoe N., Kitano M. (2009): Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Scientia Horticulturae, 122: 362-368. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.