Publikationsserver der Universitätsbibliothek Marburg

Titel:Ambiguous Perception and Selective Attention - Competitive Processes in Complex Scenarios
Autor:Marx, Svenja
Weitere Beteiligte: Einhäuser-Treyer, Wolfgang (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0227
URN: urn:nbn:de:hebis:04-z2015-02274
DOI: https://doi.org/10.17192/z2015.0227
DDC:530 Physik
Titel (trans.):Mehrdeutige Wahrnehmung und selektive Aufmerksamkeit - kompetitive Prozesse in komplexen Szenarien
Publikationsdatum:2015-05-04
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
neural network, Aufmerksamkeit, Modellierung, Psychophysik, Psychophysics, neurodegenerative Erkrankungen, Belohnung, attention, neurodegenerative diseases, Ambiguität, reward, perception, Wahrnehmung

Summary:
Unser visuelles System wird jeden Tag mit komplexen und mehrdeutigen Szenen und Ereignissen konfrontiert. Diese Informationen müssen weitergeleitet, gefiltert und verarbeitet werden, um uns ein angemessenes Verhalten in unserer Umwelt zu ermöglichen. Visuelle Wahrnehmung ist dieser Prozess der Interpretation auf der Basis von Informationen, die im sichtbaren Licht enthalten sind. Die Herausforderungen, denen sich unsere Wahrnehmung stellen muss, sind vielfältig. Fehlende Informationen erschweren die Interpretation von Situationen und das Erlangen einer kohärenten Sinneserfahrung, insbesondere da ein und dieselbe visuelle Szene oftmals verschiedene Interpretationen zulassen kann. Diese Doktorarbeit umfasst fünf Studien, die sich mit der Wahrnehmung von mehrdeutigen oder komplexen Reizen unter Laborbedingungen und in realen Situationen befassen. Hierbei wurden sowohl gesunde Probanden als auch Patienten mit neurodegenerativen Krankheiten untersucht und ein neuronales Netzwerk für das bessere Verständnis der zugrundeliegenden Verarbeitungsmechanismen im Gehirn herangezogen.

Bibliographie / References

  1. Boxer, A. L., Garbutt, S., Seeley, W. W., Jafari, A., Heuer, H. W., Mirsky, J., et al. (2012). Saccade abnor- malities in autopsy-confirmed fron- totemporal lobar degeneration and Alzheimer disease. Arch. Neurol. 69, 509–517.
  2. Rutishauser, U., & Douglas, R. J. (2009). State-dependent computation using coupled recurrent networks. Neural Computation, 21 (2), 478–509.
  3. Rutishauser, U., Douglas, R. J., & Slotine, J.-J. (2011). Collective stability of networks of winner-take-all circuits. Neural Computation, 23 (3), 735–773.
  4. Einhäuser, W., Rutishauser, U., & Koch, C. (2008, February). Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8 (2), 2.
  5. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9 (7), 545–556.
  6. Evans, K. K., & Treisman, A. (2005). Perception of objects in natural scenes: Is it really attention free? Journal of Experimental Psychology: Human Perception and Performance, 31 (6), 1476–1492.
  7. Buswell, G. T. (1935). How people look at pictures. University of Chicago Press Chicago.
  8. Wichmann, F. A., Braun, D. I., & Gegenfurtner, K. R. (2006). Phase noise and the classification of natural images. Vision Research, 46 (8), 1520–1529.
  9. Wilson, H. R. (2005). Rivalry and perceptual oscillations: A dynamical synthesis.
  10. Laing, C. R., & Chow, C. C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12 (1), 39–53.
  11. Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: A case for action-perception transfer. Psychological Research, 65 (1), 3–14.
  12. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80 (6), 2918–2940.
  13. Author's Contributions REFERENCES Bahill, A. T., Clark, M. R., and Stark, L. (1975). The main sequence, a tool for studying human eye move- ments. Math. Biosci. 24, 191–204.
  14. Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15 (4), 600–609.
  15. McMains, S., & Kastner, S. (2009). Visual attention. In M. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (p. 4296-4302). Springer Berlin Heidelberg.
  16. Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network , 14 (3), 391–412.
  17. Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: A unifying theory. Progress in Neurobiology, 76 (4), 236–256.
  18. Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10 (13), 805–808.
  19. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40 (10), 1489–1506.
  20. Fabre-Thorpe, M., Delorme, A., Marlot, C., & Thorpe, S. (2001). A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. Journal of Cognitive Neuroscience, 13 (2), 171–180.
  21. Brascamp, J. W., van Ee, R., Pestman, W. R., & van den Berg, A. V. (2005). Distributions of alternation rates in various forms of bistable perception. Journal of Vision, 5 (4), 287–298.
  22. Hayhoe, M., Mennie, N., Sullivan, B., & Gorgos, K. (2002). The role of internal models and prediction in catching balls. In Proceedings of the american association for artificial intelligence.
  23. In D. Alais & R. Blake (Eds.), Binocular rivalry (pp. 317–335). MIT Press Cambridge, MA.
  24. Einhäuser, W., Spain, M., & Perona, P. (2008). Objects predict fixations better than early saliency. Journal of Vision, 8 (14), 18.
  25. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detec- tion in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21 (1), 109–127.
  26. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inatten- tional blindness for dynamic events. Perception, 28 (9), 1059–1074.
  27. Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. In Advances in neural information processing systems (pp. 545–552).
  28. Einhäuser, W., Martin, K. A., & König, P. (2004). Are switches in perception of the necker cube related to eye position? European Journal of Neuroscience, 20 (10), 2811–2818.
  29. Lago-Rodríguez, A., Cheeran, B., Koch, G., Hortobagy, T., & Fernandez-del- Olmo, M. (2014). The role of mirror neurons in observational motor learning: an integrative review. European Journal of Human Movement, 32 , 82–103.
  30. Land, M. F., & Lee, D. (1994). Where we look when we steer. Nature, 369 (6483), 742–744.
  31. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32 (1), 3–25.
  32. Chen, A. L., Riley, D. E., King, S. A., Joshi, A. C., Serra, A., Liao, K., et al. (2010). The disturbance of gaze in progressive supranu- clear palsy: implications for patho- genesis. Front. Neur. 1:147. doi: 10.3389/fneur.2010.00147
  33. van Ee, R., van Dam, L. C. J., & Brouwer, G. J. (2005). Voluntary control and the dynamics of perceptual bi-stability. Vision Research, 45 (1), 41–55.
  34. van Ee, R. (2009). Stochastic variations in sensory awareness are driven by noisy neuronal adaptation: Evidence from serial correlations in perceptual bistability. Journal of the Optical Society of America, 26 (12), 2612–2622.
  35. Chun, M. M., & Wolfe, J. M. (2005). Visual attention. In B. E. Goldstein (Ed.), Blackwell handbook of sensation and perception (pp. 272–310). Oxford, UK: Blackwell Publishing Ltd.
  36. Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27 , 419–451.
  37. Rubin, E. (1915). Synsoplevede figurer: studier i psykologisk analyse. 1. del. Gyldendalske Boghandel, Nordisk Forlag.
  38. Dowiasch, S., Backasch, B., Einhäuser, W., Leube, D., Kircher, T., & Bremmer, F. (2015). Eye movements of patients with schizophrenia in a natural environment. European Archives of Psychiatry and Clinical Neuroscience, in press.
  39. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25 (1), 31–40.
  40. Bossink, C., Stalmeier, P., & de Weert, C. M. (1993). A test of levelt's second proposition for binocular rivalry. Vision Research, 33 (10), 1413–1419.
  41. Einhäuser, W., & König, P. (2010). Getting real—sensory processing of natural stimuli. Current Opinion in Neurobiology, 20 (3), 389–395.
  42. Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8 (10), 457–464.
  43. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom- up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16 (8), 437–443.
  44. Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research, 46 (11), 1762–1776.
  45. Billino, J., Bremmer, F., & Gegenfurtner, K. R. (2008). Differential aging of motion processing mechanisms: Evidence against general perceptual decline. Vision Research, 48 (10), 1254–1261.
  46. Naber, M., Gruenhage, G., & Einhäuser, W. (2010). Tri-stable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 50 (8), 818–828.
  47. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381 (6582), 520–522.
  48. Klein, R., Klein, B., Linton, K., & De Mets, D. L. (1991). The beaver dam eye study: Visual acuity. Ophthalmology, 98 (8), 1310–1315.
  49. Lennie, P. (2003). The cost of cortical computation. Current Biology, 13 (6), 493–497.
  50. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an rsvp task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18 (3), 849.
  51. Bundesen, C., Habekost, T., & Kyllingsbaek, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review , 112 (2), 291–328.
  52. Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology, 81 (1), 10–15.
  53. Breese, B. B. (1899). On inhibition. The Psychological Review: Monograph Supplements, 3 (1), i.
  54. Pinkhardt, E. H., and Kassubek, J. (2011). Ocular motor abnormal- ities in Parkinsonian syndromes. Parkinsonism Relat. Disord. 17, 223–230.
  55. Pinkhardt, E. H., Jurgens, R., Becker, W., Valdarno, F., Ludolph, A. C., and Kassubek, J. (2008). Differential diagnostic value of eye movement recording in PSP-parkinsonism, Richardson's syndrome, and idio- pathic Parkinson's disease. J. Neurol. 255, 1916–1925.
  56. Land, M. F., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28 (11), 1311–1328.
  57. Leeper, R. (1935). A study of a neglected portion of the field of learning—the development of sensory organization. Journal of Genetic Psychology, 46 (1), 41–75.
  58. Einhäuser, W., Schumann, F., Bardins, S., Bartl, K., Böning, G., Schneider, E., & König, P. (2007). Human eye-head co-ordination in natural exploration. Network , 18 (3), 267–297.
  59. 't Hart, B. M., Vockeroth, J., Schumann, F., Bartl, K., Schneider, E., König, P., & Einhäuser, W. (2009). Gaze allocation in natural stimuli: Comparing free exploration to head-fixed viewing conditions. Visual Cognition, 17 (6/7), 1132–1158.
  60. Necker, L. A. (1832). Lxi. observations on some remarkable optical phaeomena seen in switzerland; and on an optical phaenomenon which occurs on view- ing a figure of a crystal or geometrical solid. The London and Edinburgh Philosophy Magazine and Journal of Science, 3 , 329–337.
  61. Leigh, R. J., & Kennard, C. (2004). Using saccades as a research tool in the clinical neurosciences. Brain, 127 (3), 460–477.
  62. Golbe, L. I., and Ohman-Strickland, P. A. (2007). A clinical rating scale for progressive supranuclear palsy. Brain 130, 1552–1565.
  63. Moschner, C., & Baloh, R. W. (1994). Age-related changes in visual tracking. Journal of Gerontology, 49 (5), M235–M238.
  64. Gallant, J. L., Connor, C. E., & van Essen, D. C. (1998). Neural activity in areas v1, v2 and v4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9 (9), 2153–2158.
  65. Palmer, S. E. (1999). Vision science: Photons to phenomenology (Vol. 1). MIT press Cambridge, MA.
  66. Paffen, C. L. E., Alais, D., & Verstraten, F. A. (2006). Attention speeds binocular rivalry. Psychological Science, 17 (9), 752–756.
  67. Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20 (6), 778–784.
  68. Bartl, K., Lehnen, N., Kohlbecher, S., and Schneider, E. (2009). Head impulse testing using video- oculography. Ann. N.Y. Acad. Sci. 1164, 331–333.
  69. Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, in press.
  70. Recurrent excitation in neocortical circuits. Science, 269 (5226), 981–985.
  71. Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements. Oxford University Press.
  72. Gibb, W. R., and Lees, A. J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752.
  73. Freeman, A. W. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94 (6), 4412–4420.
  74. Chapter 2.3 is published as Marx S, Hansen-Goos O, Thrun M, & Einhäuser W (2014). Rapid serial processing of natural scenes: Color modulates detection but neither recogni- tion nor the attentional blink. Journal of Vision, 14(14):4, 1-18.
  75. Brascamp, J. W., van Ee, R., Noest, A. J., Jacobs, R. H. A. H., & van den Berg, A. V. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6 (11), 1244–1256.
  76. Elder, J. H., & Velisavljevi´Velisavljevi´c, L. (2009). Cue dynamics underlying rapid detection of animals in natural scenes. Journal of Vision, 9 (7), 7.
  77. Garbutt, S., Harwood, M. R., Kumar, A. N., Han, Y. H., and Leigh, R. J. (2003). Evaluating small eye move- ments in patients with saccadic palsies. Ann. N.Y. Acad. Sci. 1004, 337–346.
  78. Binzegger, T., Douglas, R. J., & Martin, K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience, 24 (39), 8441–8453.
  79. Orbach, J., Ehrlich, D., & Helen, A. H. (1963). Reversibility of the necker cube: I. an examination of the concept " satiation of orientation " . Perceptual and Motor Skills, 17 (2), 439–458.
  80. Fox, R., & Herrmann, J. (1967). Stochastic properties of binocular rivalry alter- nations. Attention, Perception, & Psychophysics, 2 (9), 432–436.
  81. Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In R. W.A. (Ed.), Sensory communication (pp. 217–234). MIT Press Cambridge, MA.
  82. Blake, R., O'Shea, R. P., & Mueller, T. J. (1992). Spatial zones of binocular rivalry in central and peripheral vision. Visual Neuroscience, 8 , 469–478.
  83. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9 (2), 129–154.
  84. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11 (8), 349–355.
  85. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recog- nition: Evidence for a common attentional mechanism. Vision Research, 36 (12), 1827–1837.
  86. Perception and prediction of simple object interactions. In Proceedings of References the 4th symposium on applied perception in graphics and visualization (pp. 27–34).
  87. Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. K. (2002). Stable percep- tion of visually ambiguous patterns. Nature Neuroscience, 5 (6), 605–609.
  88. Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3 (7), 254–264.
  89. Leopold, D. A., & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 379 (6565), 549– 553.
  90. Attentional modulation of reward processing in the human brain. Human brain mapping, 35 (7), 3036–3051.
  91. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. The Journal of Neuroscience, 30 (33), 11096–11103.
  92. von Helmholtz, H. (1867). Handbuch der physiologischen optik: mit 213 in den text eingedruckten holzschnitten und 11 tafeln. Voss, Leipzig.
  93. James, W. (1890). The principles of psychology. New York: Holt.
  94. Levelt, W. J. M. (1968). On binocular rivalry. The Hague: Mouton.
  95. Levelt, W. J. M. (1967). Note on the distribution of dominance times in binocular rivalry. British Journal of Psychology, 58 (1-2), 143–145.
  96. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2 (10), 704–716.
  97. Damm, O., Malchus, K., Jaecks, P., Krach, S., Paulus, F., Naber, M., . . . others (2013). Different gaze behavior in human-robot interaction in asperger's syndrome: An eye-tracking study. In Ro-man, 2013 ieee (pp. 368–369).
  98. Sekuler, R., & Blake, R. (1985). Perception. New York: Alfred A. Knopf.
  99. Irving, E. L., Steinbach, M. J., Lillakas, L., Babu, R. J., & Hutchings, N. (2006). Horizontal saccade dynamics across the human life span. Investigative Oph- thalmology & Visual Science, 47 (6), 2478–2484.
  100. Haegerstrom-Portnoy, G. (2005). The glenn a. fry award lecture 2003: Vision in elders—summary of findings of the ski study. Optometry & Vision Science, 82 (2), 87–93.
  101. Munoz, D. P., Broughton, J. R., Goldring, J. E., & Armstrong, I. T. (1998). Age- related performance of human subjects on saccadic eye movement tasks. Experimental Brain Research, 121 (4), 391–400.
  102. Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind , 2 (1), 5–38.
  103. Eriksen, C. W., & James, J. D. S. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40 (4), 225–240.
  104. MacLean, M. H., & Arnell, K. M. (2012). A conceptual and methodological framework for measuring and modulating the attentional blink. Attention, Perception, & Psychophysics, 74 (6), 1080–1097.
  105. Bundesen, C. (1990). A theory of visual attention. Psychological Review , 97 (4), 523–547.
  106. Brandt, T., Glasauer, S., and Schneider, E. (2006). A third eye for the surgeon. J. Neurol. Neurosurg. Psychiatry 77, 278. Burn, D. J., and Lees, A. J. (2002). Progressive supranuclear palsy: where are we now? Lancet Neurol. 1, 359–369.
  107. Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take- all competition among visual filters. Nature Neuroscience, 2 (4), 375–381.
  108. Authors' contributions: SD and FB conceived the study; SD and SM collected and analyzed the data; SD wrote the article; WE and FB supervised data analysis and all authors proof-read the manuscript. 129
  109. Authors' contributions: SM and WE conceived the study; SM designed the ex- periment, performed data collection and data analysis; SM and WE wrote the article.
  110. Authors' contributions: SM, GG, UR and WE conceived the study; SM, GG, and UR conducted the modeling; SM and DW designed and conducted the ex- periment, and analyzed the experimental data; SM, UR and WE wrote the paper.
  111. Wheatstone, C. (1838). Contributions to the physiology of vision.–part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical transactions of the Royal Society of London, 128 , 371–394.
  112. Declaration of the authors' contributions to the studies
  113. Schneider, E., Bartl, K., Bardins, S., Dera, T., Boning, G., and Brandt, T. (2006). Documentation and teach References Acik, A., Sarwary, A., Schultze-Kraft, R., Onat, S., & König, P. (2010). De- velopmental changes in natural viewing behavior: bottom-up and top-down differences between children, young adults and older adults. Frontiers in Psychology, 1 , 207.
  114. Eye movements in natural behavior. Trends Cogn. Sci. 9, 188–194.
  115. Treue, S., & Martinez-Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399 (6736), 575– 579.
  116. Hahnloser, R., Douglas, R. J., Mahowald, M., & Hepp, K. (1999). Feedback interactions between neuronal pointers and maps for attentional processing. Nature Neuroscience, 2 (8), 746–752.
  117. References Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time-and spatial-scale-dependent scene recognition. Psychological Science, 5 (4), 195–200.
  118. Klink, P. C., van Ee, R., & van Wezel, R. J. A. (2008). General validity of levelt's propositions reveals common computational mechanisms for visual rivalry. PLoS One, 3 (10), e3473. Knoblich, G., & Sebanz, N. (2006). The social nature of perception and action. Current Directions in Psychological Science, 15 (3), 99–104.
  119. Mazer, J. A., & Gallant, J. L. (2003). Goal-related activity in v4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron, 40 (6), 1241–1250.
  120. 't Hart, B. M., & Einhäuser, W. (2012). Mind the step: Complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Experimental Brain Research, 223 (2), 233–249.
  121. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area v4. The Journal of Neuroscience, 14 (4), 2178–2189.
  122. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4 (4), 219–227.
  123. Specifically, chapter 2.1 is published as
  124. Blake, R., Fox, R., & McIntyre, C. (1971). Stochastic properties of stabilized- image binocular rivalry alternations. Journal of Experimental Psychology, 88 (3), 327–332.
  125. The main part of this thesis consists of five articles I co-authored, which are pub- lished or accepted for publication.
  126. Yuille, A., & Geiger, D. (2003). Winner-take-all networks. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1228–1231). MIT Press Cambridge, MA.
  127. Bruner, J. S., & Potter, M. C. (1964). Interference in visual recognition. Science, 144 (3617), 424–425.
  128. References Boring, E. G. (1930). A new ambiguous figure. The American Journal of Psy- chology, 42 , 444–445.
  129. van Dam, L. C. J., & van Ee, R. (2006). The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision research, 46 (6), 787–799.
  130. Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas mt and mst. Nature, 382 (6591), 539–541.
  131. References Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nature Neuroscience, 3 (12), 1340–1345.
  132. Land, M. F., & Tatler, B. W. (2001). Steering with the head: The visual strategy of a racing driver. Current Biology, 11 (15), 1215–1220.
  133. Mack, A., & Rock, I. (1998). Inattentional blindness. MIT Press Cambridge, MA.
  134. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23 (1), 315–341.
  135. References Wichmann, F. A., Drewes, J., Rosas, P., & Gegenfurtner, K. R. (2010). Animal detection in natural scenes: Critical features revisited. Journal of Vision, 10 (4), 6.
  136. van Rullen, R., & Thorpe, S. J. (2001). Is it a bird? is it a plane? ultra-rapid visual categorisation of natural and artifactual objects. Perception, 30 (6), 655–668.
  137. Maunsell, J. H. R., Nealey, T. A., & DePriest, D. D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual References area (mt) of the macaque monkey. The Journal of Neuroscience, 10 (10), 3323–3334.
  138. Betz, T., Kietzmann, T. C., Wilming, N., & König, P. (2010). Investigating task- dependent top-down effects on overt visual attention. Journal of Vision, 10 (3), 15.
  139. Marx S, & Einhäuser W (2015). Reward modulates perception in binocular rivalry. Journal of Vision, 15(1):11, 1-13.
  140. Rousselet, G. A., Macé, M. J.-M., & Fabre-Thorpe, M. (2003). Is it an animal? is it a human face? fast processing in upright and inverted natural scenes. Journal of Vision, 3 (6), 5.
  141. Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? differences between binocular rivalry and ambiguous figures. Journal of Vision, 4 (7), 2.
  142. Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. A. (2007). Percept- choice sequences driven by interrupted ambiguous stimuli: A low-level neural model. Journal of Vision, 7 (8).
  143. Frey, H.-P., Honey, C., & König, P. (2008). What's color got to do with it? the influence of color on visual attention in different categories. Journal of Vision, 8 (14), 6.
  144. Yao, A. Y., & Einhäuser, W. (2008). Color aids late but not early stages of rapid natural scene recognition. Journal of Vision, 8 (16), 12.
  145. Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum Press.
  146. Di Pace, E., & Saracini, C. (2014). Action imitation changes perceptual alterna- tions in binocular rivalry. PloS One, 9 (5), e98305.
  147. Li, F. F., van Rullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99 (14), 9596–9601.
  148. Whiting, W. L., Madden, D. J., Pierce, T. W., & Allen, P. A. (2005). Searching from the top down: Ageing and attentional guidance during singleton detec- tion. The Quarterly Journal of Experimental Psychology Section A, 58 (1), 72–97.
  149. Einhäuser, W., Koch, C., & Makeig, S. (2007). The duration of the attentional blink in natural scenes depends on stimulus category. Vision Research, 47 (5), 597–607.
  150. Madden, D. J. (2007). Aging and visual attention. Current Directions in Psycho- logical Science, 16 (2), 70–74.
  151. References Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences, 105 (5), 1704–1709.
  152. Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of uncon- sciously processed visual stimuli in adult humans. Neuron, 61 (5), 700–707.
  153. Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophys- iology, 98 (3), 1125–1139.
  154. Brascamp, J. W., Pearson, J., Blake, R., & van den Berg, A. V. (2009). In- termittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations. Journal of Vision, 9 (3), 3.
  155. Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29 (6), 317–322.
  156. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual atten- tion. Annual Review of Neuroscience, 18 (1), 193–222.
  157. Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision. Proceedings of the National Academy of Sciences, 100 (24), 14499–14503.
  158. Meng, M., & Potter, M. C. (2008). Detecting and remembering pictures with and without visual noise. Journal of vision, 8 (9), 7.
  159. Della Libera, C., Perlato, A., & Chelazzi, L. (2011). Dissociable effects of re- ward on attentional learning: From passive associations to active monitor- ing. PLoS One, 6 (4), e19460.
  160. Delorme, A., Richard, G., & Fabre-Thorpe, M. (2010). Key visual features for rapid categorization of animals in natural scenes. Frontiers in Psychology, 1 , 21.
  161. Naber, M., Frässle, S., & Einhäuser, W. (2011). Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PloS One, 6 (6), e20910.
  162. Otero-Millan, J., Serra, A., Leigh, R. J., Troncoso, X. G., Macknik, S. L., and Martinez-Conde, S. (2011). Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy.
  163. Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual catego- rization. Frontiers in Psychology, 2 , 243.
  164. Arnold, D. H. (2011). Why is binocular rivalry uncommon? discrepant monocular images in the real world. Frontiers in Human Neuroscience, 5 , 116.
  165. Paffen, C. L. E., & Alais, D. (2011). Attentional modulation of binocular rivalry. Frontiers in Human Neuroscience, 5 , 105.
  166. Dieter, K. C., & Tadin, D. (2011). Understanding attentional modulation of binocular rivalry: A framework based on biased competition. Frontiers in Human Neuroscience, 5 , 155.
  167. Chapter 2.5 is published as Marx S, Respondek G*, Stamelou M, Dowiasch S, Stoll J, Bremmer F, Oertel W H, Höglinger G U**, & Einhäuser W** (2012). Validation of mobile eye-tracking as novel and efficient means for differentiating progres- sive supranuclear palsy from Parkinson's disease. Frontiers in Behavioral Neuroscience, 6(88).
  168. Moreno-Bote, R., Shpiro, A., Rinzel, J., & Rubin, N. (2010). Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance. Journal of Vision, 10 (11), 1.
  169. St˘ ani¸ani¸sor, L., van der Togt, C., Pennartz, C. M., & Roelfsema, P. R. (2013). A unified selection signal for attention and reward in primary visual cortex. Proceedings of the National Academy of Sciences, 110 (22), 9136–9141.
  170. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7 (3), 308–313.
  171. Chapter 2.2 is published as Marx S,Gruenhage G, Walper D, Rutishauser U, & Einhäuser W (2015). Competition with and without priority control: linking rivalry to attention through winner-take-all networks with memory. Annals of the New York Academy of Sciences, 1339, 138-153.
  172. Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R. C., et al. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syn- drome). Neurology 47, 1–9.
  173. Ooi, T. L., & He, Z. J. (1999). Binocular rivalry and visual awareness: The role of attention. Perception, 28 (5), 551–574.
  174. Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41 (25-26), 3559–3565.
  175. Beets, I. A. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to-perception transfer: Only percept-dependent action affects perception. Vision Research, 50 (24), 2633–2641.
  176. Stoll, J., Thrun, M., Nuthmann, A., & Einhäuser, W. (2015). Overt attention in natural scenes: Objects dominate features. Vision Research, 107 , 36–48.
  177. Lago-Fernández, L. F., & Deco, G. (2002). A model of binocular rivalry based on competition in it. Neurocomputing, 44 , 503–507.
  178. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where's the action? the pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17 (5), 202–209.
  179. Lich, M., & Bremmer, F. (2014). Self-motion perception in the elderly. Frontiers in Human Neuroscience, 8 , 681.
  180. Chapter 2.4 is published as Dowiasch S., Marx S, Einhäuser W, & Bremmer F (2015). Effects of aging on eye movements in the real world. Frontiers in Human Neuroscience, 9(46).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten