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Background
Current image reconstruction techniques in computed tomography (CT) such as filtered back-projection (FBP) and iterative re-
construction (IR) have limited use in low-dose CT imaging due to poor image quality and reconstruction times not fit for clinical 
implementation. Hence, with the increasing need for radiation dose reductions in CT, the use of  artificial intelligence (AI) in image 
reconstruction has been an area of  growing interest.
Aim
The aim of  this review is to examine the use of  AI in CT image reconstruction and its effectiveness in enabling further dose reduc-
tions through improvements in image quality of  low-dose CT images.
Method
A review of  the literature from 2016 to 2020 was conducted using the databases Scopus, Ovid MEDLINE, and PubMed. A sub-
sequent search of  several well-known journals was performed to obtain additional information. After careful assessment, articles 
were excluded if  they were not obtainable from the databases or not available in English.
Results
This review found that deep learning-based algorithms demonstrate promising results in improving the image quality of  low-dose 
images through noise suppression, artefact reduction, and structure preservation in addition to optimising IR methods.
Conclusion
In conclusion, with the two AI-based CT systems currently in clinical use showing favourable benefits, it is expected that AI algo-
rithms will continue to proliferate and enable significant dose reductions in CT imaging.
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AI: Artificial intelligence; CT: Computed tomography; ML: Machine learning; DL: Deep learning; FBP: Filtered back-projection; 
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INTRODUCTION

The use of  computed tomography (CT) has rapidly increased 
in recent decades as it allows for visualisation of  anatomical 

structures with high spatial and temporal resolution. However, with 

the extensive amount of  CT scans being performed each year, the 
ionising radiation inherent to CT has become a public concern.1,2 
Relative to this, there has been growing interest in radiation dose re-
duction in CT examinations. Currently, most commercial CT scan-
ners adopt the filtered back-projection (FBP) method to analyti-
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cally reconstruct images as its process is robust and reconstruction 
times are quick. However, the image quality of  FBP reconstructed 
images at reduced doses is significantly degraded due to excessive 
noise levels caused by mathematical assumptions made by the CT 
system.3,4 To solve these limitations, iterative reconstruction (IR) 
algorithms were introduced, enabling improved image quality and 
greater potential for lower radiation doses. However, despite this, 
the large computational demand and lengthy reconstruction time 
limits the use of  IR techniques.

	 Recently, researchers have proposed the use of  artificial 
intelligence (AI) to improve CT image reconstruction. One ap-
plication involves a sharpness-aware general adversarial network 
to achieve low-dose CT (LDCT) denoising.5 Another concept uti-
lises a multi-scale wavelet domain residual learning architecture for 
limited-angle CT reconstruction to eliminate artefacts and preserve 
edges,6 while other approaches involve optimising IR methods 
through synthetic sinogram-based noise simulations7 or k-sparse 
autoencoders.8 These AI-based image reconstruction techniques 
all share a common goal, namely to improve the image quality of  
low-dose CT images. These methods have shown great promise 
in achieving exactly this, with several AI algorithms already being 
clinically implemented. Currently, two CT systems have received 
510(k) clearance by the U.S Food and Drug Administration (FDA) 
for AI-based CT image reconstruction: Advanced intelligent Clear-
IQ Engine (AiCE), Canon Medical Systems, Tochigi, Japan 9) and 
deep learning (DL) Image Reconstruction (IR)/TrueFidelity™ (GE 
Healthcare, Illinois, USA10). With the associated advantages of  
these technologies, it is expected that AI will continue to enhance 
current reconstruction methods and improve the workflow of  
clinical CT imaging. 

	 The primary purpose of  this literature review is to ex-
amine the use of  AI-based algorithms in CT reconstruction and 
its effectiveness in improving the diagnostic image quality of  low-
dose images. The secondary aims are to provide an overview of  
the weaknesses of  current CT reconstruction methods, namely 
filtered back-projection and iterative reconstruction, and discuss 
how machine learning and deep learning algorithms can overcome 
these limitations.

BACKGROUND

In order to understand the rationale for the use of  AI in CT image 
reconstruction, it is essential to first comprehend the fundamental 
principles of  AI and its subsets of  machine learning (ML) and 
DL. Artificial intelligence refers to a field within computer science 
whereby an artificial system can mimic human behaviour such as 
cognitive functions associated with learning capabilities and prob-
lem-solving skills.11,12 More recently, advances in both imaging and 
computers have led to the rapid use of  AI in a variety of  different 
radiological applications including characterisation and monitoring 
of  diseases.13

	 Machine learning is a subset of  AI which involves the 
analysis of  complex data sets to learn and find patterns in order 
to classify categories or predict future conditions without being 

explicitly programmed.11,12,14,15 ML can be further categorised into 
supervised and unsupervised learning. In supervised learning,  the 
computer is trained with a dataset that is labelled with ground truth 
annotations from which the algorithm learns.11,12,14-16 This model 
involves a mathematical relationship between the input data and 
the labelled outputs, and a predictive model that is validated us-
ing unseen test data. Supervised learning is commonly used in two 
tasks, specifically classification and regression. In classification, the 
output data is a discrete categorical number whereas in regression, 
the output data is a continuous numerical value.15,16 In contrast, 
the algorithm in unsupervised learning learns from unlabelled 
data which infers an unknown outcome.11,12,14-16 This commonly 
involves clustering, principal component analysis, and generative 
adversarial networks (GANs).15,16

	 Deep learning is a subset of  machine learning that has 
gained popularity amongst many researchers in recent years. It 
involves algorithms which contain multiple hidden layers to as-
sess and learn complex patterns within the raw input data.11-13,17 
One approach of  DL involves an artificial neural network (ANN), 
which consists of  layers with interconnecting nodes including an 
input layer, a hidden layer responsible for training, and an output 
layer (Figure 1).16 During training of  the ANN, the value of  the 
nodes are updated by parameterising weights through learning al-
gorithms such as back propagation. By iterating the back propaga-
tion through the network, optimised weights for each node will 
reduce losses and the accuracy of  the ANN components will be 
improved.15,16 More recently, ANN has been expanded into deep 
neural networks (DNN) which incorporates many stacked hidden 
layers with connecting nodes between the input and output layers. 
The additional stacked layers have the ability to solve more com-
plex problems by producing simple decisions between the layers. 
However, despite largely exhibiting improved performance in pre-
diction tasks such as classification and regression, the added layers 
can cause issues, specifically the vanishing gradient problem and 
increased computational demand.15,16

	 Possibly the most well-known DL architecture is the con-
volutional neural network (CNN). A CNN comprises a series of  

Figure 1.  Overview of Artificial Neural Network (ANN)

A: In a node, the input value has associated weights, biases, and activation functions. 
This transforms the node resulting in a different output value, which is then transmit-
ted to the next node where it acts as the input value. B: ANN architecture involving 
multiple input, hidden, and output layers comprising of multiple nodes (Reproduced 
under Creative Commons License).16 
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convolution, pooling, and fully connecting layers (Figure 2).11,13,15-17 

The main role of  the convolution layer is to recognise and identify 
patterns in the image. Between the convolution layers are pooling 
layers which generally extracts the maximum value of  the input 
layer to reduce the size of  feature maps and minimise overfitting 
problems and computational load. These layers are then followed 
by fully connected layers which combine all activations from the 
previous layers before an output layer finally provides a predic-
tion.15-17

	 Artificial intelligence, particularly deep learning, has been 
employed in various medical imaging tasks such as characterisation 
and monitoring of  diseases. However, with the increasing need for 
radiation dose reductions in CT imaging, the use of  AI in CT im-
age reconstruction is now a growing area of  interest among re-
searchers.

METHODS

An initial search of  the databases Scopus, Ovid MEDLINE, and 
PubMed was performed for literature published from 2016 to 
2020. Only articles that were published within the last four years 
were included as CT and AI is a quickly evolving area. The search 
strategy involved keywords which were “artificial intelligence 
(AI)”, “computed tomography (CT)”, “image reconstruction”, 
“deep learning (DL)”, and “machine learning (ML)”. A subsequent 
search of  various well-known journals such as Radiology, Euro-
pean Journal of  Radiology, Journal of  the American College of  
Radiology, European Radiology, and IEEE Transactions on Medi-
cal Imaging was performed to collect additional information on 
other CT reconstruction techniques such as FBP and IR. The ini-
tial search results were screened and assessed for relevance where 
articles were excluded if  they were not obtainable from the data-
bases or were not available in English. Literature that was included 
in this review either provided general information regarding AI, IR 
and FBP image reconstruction techniques or were experimental 
studies that measured the effects of  AI-based algorithms on image 
reconstruction. 

RESULTS AND DISCUSSION

For the purpose of  this review, it is essential to first comprehend 
the current CT image reconstruction algorithms and its associated 
limitations, so as to recognise the need for prospective develop-
ments in image reconstruction methods such as the use of  artifi-
cial intelligence. Various articles provided an overview of  the basic 
principles and limitations of  the FBP and IR reconstruction tech-
niques.3,4,18-30

COMPUTED TOMOGRAPHY RECONSTRUCTION
TECHNIQUES

For decades, FBP was the standard image reconstruction method 
until 2009 when IR techniques were clinically introduced.3 Within 
a few years, IR methods had quickly progressed into advanced re-
construction algorithms that are still in use today. However, limita-
tions of  current reconstruction techniques still exist, providing a 
rationale for future developments in CT image reconstruction.  

Filtered Back Projection

The conventional FBP process involves two main elements: a 
convolution filter and back-projection. After obtaining the mea-
sured projection data, a high-pass filter is applied prior to the linear 
transformation of  the projection data into image space by back-
projection.4 This process is repeated with the X-ray source at dif-
ferent angles until the full image has been reconstructed.18 The use 
of  a high-pass kernel is necessary in order to compensate for the 
effect of  blurring that occurs due to the imbalance between the 
number of  projections passing through the centre and periphery 
of  an object.4,18 Utilising a convolution filter reduces the blur and 
therefore improves the spatial resolution or overall sharpness of  
the image.4,18

	 Despite these short reconstruction times and requiring 
limited computational power, the FBP reconstruction process has 
various limitations.4 In particular, at reduced doses, FBP is associ-
ated with higher image noise and streaking artefacts due to math-
ematical assumptions made by the CT system.3,20 These approxi-
mations include: hardware details such as an infinitely small focal 
spot size; a pencil-beam X-ray geometry; active detector elements, 
and X-ray photon statistics such as the poisson distribution.4,19 
Additionally, with larger body sizes, photon starvation occurs at 
low doses resulting in an increase in the susceptibility to artefacts. 
Hence, with the increasing prevalence of  obesity, the image quality 
of  FBP reconstructed images is significantly reduced. As a result 
of  these limitations, IR methods were introduced in order to pro-
duce higher quality images at lower radiation doses.3,4

Iterative Reconstruction

IR algorithms provide advantages over FBP, and therefore it is es-
sential to first understand the principles of  this technique. Iterative 
reconstruction algorithms consist of  three key steps which first 
begins with a forward projection of  the initial object estimate (de-
rived from the measured projection data) to generate the synthetic 

Figure 2.  Overview of a Convolutional Neural Network (CNN)

A: The convolutional layer is constructed by convolving the input layer by a kernel.
B: The max-pooling layer is required to reduce the spatial footprint size and is 
obtained by extracting the maximum values from a windowed area of the input 
layer. C: CNN architecture comprising a sequence of convolutional, pooling, and 
fully connected layers (Reproduced under Creative Commons License).16

http://dx.doi.org/10.17140/ROJ-4-129


Lee T et al

Radiol Open J. 2020; 4(2): 30-38. doi: 10.17140/ROJ-4-129

projection data. In the second step, a comparison of  the artificial 
raw data with the measured projection data is made to calculate 
a correction term and lastly through back-projection, the correc-
tion term is applied to update the current object estimate. This 
process is iteratively repeated until a predefined stopping criterion 
in the object estimate is met or a fixed number of  iterations is 
reached.4,18,20,21

	 Iterative reconstruction algorithms can be classified into 
two main categories including statistical (hybrid) and model-base 
diterative methods. Statistical IR methods, also known as hybrid 
algorithms combine analytical and iterative techniques in differ-
ent sequences which either involve the sinogram domain or image 
domain. In the sinogram, or raw data domain, an edge-preserving 
denoising algorithm is utilised on the raw projection data in order 
to minimise image noise and streaking artefacts that would occur 
without modification.4,18,20 Similarly, image domain algorithms seek 
to reduce image noise whilst preserving depiction of  fine anatomi-
cal and low-contrast structures.4,20

	 Model-based IR (MBIR) algorithms implement models 
of  the acquisition process, image statistics, or system geometry. In 
general, the more accurate the model to the process, the better the 
synthetic image can be matched to the raw data and hence lead to 
improved image quality of  the reconstruction. In order to reduce 
computational complexity and time in MBIR methods, iterative fil-
tration in the sinogram and image domain can be used to reduce 
the number of  iterative projection steps to assist in quicker recon-
struction times.4,20,21

Current Examples of Iterative Reconstruction Algorithms

Currently, all major CT vendors have introduced advanced IR algo-
rithms for clinical use in attempt to enable low-dose CT (LDCT) 
whilst maintaining high image quality. In 2009, Siemens Health-
ineers was the first vendor to receive FDA clearance for an IR 
algorithm known as iterative reconstruction in image space (IRIS).3 

In the subsequent years, other major vendors such as GE Health-
care, Philips Healthcare, and Canon Healthcare obtained FDA 
approval for different types of  advanced IR algorithms. These 
techniques can be classified into two categories, namely algorithms 
that are of  image post-processing nature (AIDR3D, IRIS, iDose4, 
ASIR) and algorithms which can perform one or more iterations 
through the raw data domain (ASIR-V, Veo, SAFIRE, ADMIRE, 
IMR, FIRST).22 All CT vendors differ in their approach with the 
IR process, for example whether they are hybrid-based or model-
based algorithms. However, they all share a common goal aiming 
for improved noise and artefact reduction with lower reconstruc-
tion times in order to enable reduced radiation doses with high 
diagnostic quality.3,19 A summary of  the key features from the cur-
rent leading IR algorithms offered by major CT vendors is outlined 
in Table 1.3

Advantages and Limitations of Iterative Reconstruction

Several studies have identified the advantages of  IR and its ability 
to solve limitations inherent to FBP.23-28 For example, the perfor-
mance in FBP is challenged when reducing the radiation dose due 
to the mathematical assumptions made by the CT system, however 
with repeated iterations, a more accurate estimate of  the assump-
tions can be made to create images with decreased noise levels and 
reduced susceptibility to artefacts.4,19,20 Therefore, in comparison 
to FBP, IR offers improved image quality with noise and artefact 
reduction and hence greater potential for lowering radiation dos-
es.3,4,20

	 Despite the effectiveness of  IR methods in enhancing the 
diagnostic quality of  images at reduced radiation doses, limitations 
still exist. The main weakness of  IR algorithms is the increased 
computational demand and associated slower reconstruction 
times, particularly for model-based algorithms.4,20 Furthermore, 
several studies have found that IR techniques are subject to the risk 
of  over smoothing images in addition to reports of  unfamiliar im-
age textures such as a “blocky” or “pixelated” appearance around 
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Table 1. Current Leading Iterative Reconstruction Algorithms from the Major CT Vendors3

CT Vendor Algorithm 
Name Type Year of FDA 

Clearance
Reconstruction 

Speed
Noise 

Reduction
Artefact 

Reduction

GE Healthcare
ASIR Hybrid 2011 Average Strong Average

Veo Model-based 2011 Minimal Very strong Strong

Philips Healthcare

ASIR-V Hybrid 2014 Average Strong Average

iDose4 Hybrid 2012 Average Strong Average

IMR Model-based 2013 Minimal Very strong Strong

Siemens Health-
ineers

IRIS Hybrid (image domain) 2009 Fast Average Minimal

SAFIRE Hybrid 2011 Average Strong Average

ADMIRE Model-based 2012 Minimal Very strong Strong

Canon Health-
care

AIDR3D Hybrid 2012 Average Strong Average

FIRST Model-based 2016 Minimal Very strong Strong

ASIR: Adaptive statistical image reconstruction; MBIR: Model-based iterative reconstruction; IMR: Iterative model reconstruction; 
IRIS: Iterative reconstruction in image space; SAFIRE: Sinogram-affirmed iterative reconstruction; ADMIRE: Advanced modelled 
iterative reconstruction; AIDR3D: Adaptive iterative dose reduction 3D; FIRST: Forward projection model-based iterative 
reconstruction solution
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tissue margins.4,18,19,29,30 Relative to these limitations, AI has shown 
great potential in further improving the reconstruction of  CT im-
ages.

THE USE OF ARTIFICIAL INTELLIGENCE IN COMPUTED
TOMOGRAPHY IMAGE RECONSTRUCTION

There has been an increasing need for radiation dose reductions 
in CT, however, with the FBP reconstruction method, this results 
in a trade-off  with increased noise levels and lower image qual-
ity. Although IR methods are effective in solving the weaknesses 
of  FBP, limitations still arise. Relative to this, artificial intelligence 
has the potential to overcome the limitations of  both FBP and IR 
reconstruction techniques and further reduce radiation dose levels 
whilst simultaneously achieving high-quality images. 

Application of Artificial Intelligence in Enhancing Image Quality

In recent years, several deep learning-based algorithms have been 
proposed to enhance image quality in low dose CT images.5,6,31-37 
In particular, image noise and artefact susceptibility can be re-
duced, and structures can be preserved. Chen et al31 proposed the 
concept of  a residual encoder-decoder CNN (RED-CNN) which 
combined a deconvolutional network, autoencoder, and shortcut 
connections to achieve LDCT imaging. To validate the perfor-
mance of  the RED-CNN, a dataset of  quarter-dose images from 
the 2016 low-dose CT Grand Challenge was used and comparisons 
in the root mean square error (RMSE), peak signal-to-noise ratio 
(PSNR), and structural similarity index (SSIM) were made against 
five other competing methods. The results demonstrated that the 
proposed network was highly successful in detail preservation and 
noise and artefact suppression compared to the other methods.

	 Cong et al32 proposed an algorithm to accurately match 
the linear integral model at a target energy level, realise monochro-
matic imaging, and eliminate beam hardening artefacts. The algo-
rithm was trained using a dataset consisting of  dual-energy CT 
images of  the abdomen and performance was tested by inputting 
conventional CT images into the network to produce corrected 
projection data. Comparisons were then made between the recon-
structed and ground truth images. The results showed that their-
method has the potential to achieve high accuracy in correcting the 
projection data with a relative error of  less than 0.2%, indicating its 
effectiveness in improving image quality through monochromatic 
image reconstruction.

	 Gu et al6 and Han et al34 both proposed a multi-scale deep 
residual learning architecture for limited-angle CT reconstruction 
to eliminate artefacts and preserve structures. Gu and Ye created 
the algorithm within the wavelet domain, whereas Han et al. devel-
oped the network based on a persistent homology analysis. Results 
showed that the network proposed by Gu and Ye was successful in 
achieving improved and clear reconstruction with artefact reduc-
tion and edge preservation compared to other methods. In terms 
of  quantitative analysis, the proposed network attained the highest 
PSNR and SSIM, and the lowest NRMSE. Assessments for the 
performance of  the algorithm proposed by Han et al also showed 

improvements in image reconstruction quality, being most effec-
tive in removing streaking artefacts and reducing computational 
speeds. As for numerical analysis, the network outperformed other 
methods in PSNR. However, this paper could potentially be im-
proved by using more comparative quantitative metrics such as the 
SSIM or normalised RMSE like in Gu et al.
 
Application of Artificial Intelligence in Optimising IR Methods

Besides improving the image quality, AI can be implemented to 
optimise IR algorithms.7,8,38 Wu et al8 developed an IR method 
based on priors learned by a k-sparse autoencoder. The algorithm 
was applied to datasets containing abdominal and chest CT im-
ages acquired at different radiation doses. When compared against 
other widely used priors in terms of  SSIM and CNR, the results 
showed the proposed network to be more successful in noise sup-
pression and structure preservation for quarter-dose data and up 
to 1/6th of  the regular dose. 

	 Another study conducted by Ahn et al7 proposed the 
use of  a deep learning IR method involving a synthetic sinogram-
based noise simulation approach to denoise CT images. The first 
step in training the CNN involved decomposing a noisy sinogram 
and a noise sinogram to obtain the noise pattern in the sinogram 
domain. Secondly, the CNN was trained to learn the noise pattern 
in a supervised manner. Lastly for the test phase, LDCT image 
denoising was performed by subtracting the noise CT image from 
the simulated LDCT image to produce a deep IR image. When 
comparing the LDCT image to the denoised image, quantitative 
results demonstrated an improvement in the SSIM and PSNR and 
qualitative results showed that the noise level was reduced by ap-
proximately 56%. 

	 Another approach to optimising IR methods was devel-
oped by Ziabari et al38 who developed a fast reconstruction algo-
rithm using deep learning to approximate model-based IR (DL-
MBIR). In addition, they suggested 2D, 2.5D, and 3D variations 
of  their DL-MBIR method. When their methods were applied to 
clinical datasets, the results demonstrated that the 2.5D DL-MBIR 
method offered image quality comparable or even better than fully 
3D processing with significantly reduced computational cost, in-
dicating the effectiveness of  using a 2.5D deep CNN to optimise 
MBIR techniques. 

	 Overall, machine learning and deep learning approaches 
have shown great potential in optimising CT image reconstruction, 
producing promising improvements in image quality and recon-
struction times. Table 2 summarises various AI-based CT image 
reconstruction proposals made by many researchers and their ap-
proach in improving and optimising existing reconstruction meth-
ods. Currently, the U.S. FDA have approved two AI-based image 
reconstruction technologies that are now in clinical use.

CURRENT ARTIFICIAL INTELLIGENCE - BASED COMPUTED 
TOMOGRAPHY IMAGE RECONSTRUCTION
TECHNOLOGIES 

At present, two manufacturers – GE Healthcare and Canon Medi-
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cal Systems, have received 510(k) clearance by the U.S. FDA for AI-
based CT image reconstruction technologies. Compared to current 
reconstruction methods such as FBP and IR, deep learning-based 
image reconstruction systemsare able to achieve improved image 
quality without compromising on dose performance.

Deep Learning Image Reconstruction/TrueFidelity Computed
Tomography Images – GE Healthcare

GE Healthcare was the first CT vendor to obtain U.S. FDA clear-
ance for a deep learning image reconstruction (DLIR) technology 
in April 2019. The DLIR system utilises a deep neural network to 
generate high quality TrueFidelity™ CT images on their Revolu-
tion Apex CT scanner. The main goal of  the DLIR engine was 
to outperform existing CT reconstruction techniques, specifically 
MBIR methods, in terms of  dose performance, image quality, and 
reconstruction speed.39

	 To achieve this goal, the system was designed by embed-
ding many layers of  mathematical equations and technical knowl-
edge within a DNN. In the training phase, supervised training was 
performed which involved inputting low dose raw data through the 
DNN and comparing the output image to a ground-truth image 
which was a high dose version of  the same data. Comparisons of  
various parameters such as image noise, noise texture, and low-
contrast detectability were made between the low dose and high 
dose versions of  the images. Subsequently, the differences between 

the images were reported to the DNN network via backpropaga-
tion, which was then adjusted to minimise the differences between 
the images. This training process was then repeated on thousands 
of  training datasets until there was accuracy between the output 
and ground-truth images. Following the training process came ex-
tensive testing whereby the DLIR system was tested to reconstruct 
many advanced clinical and phantom cases that were not used in 
the training dataset to ensure its accuracy and robustness.39

	 In clinical practice, the acquired scan data goes through 
the DNN-based DLIR engine to generate ground-truth equiva-
lent images, commercially known as TrueFidelity™ CT images. One 
feature of  the DLIR engine is that without affecting the recon-
struction speed, three reconstruction strength levels (low, medium, 
high) can be selected to manage the amount of  noise reduction. 
Assessments of  the DLIR system performance was compared 
against FBP and ASIR-V reconstruction methods. The results 
demonstrated improved noise reduction efficiency, a noise texture 
similar to that of  high dose FBP, increased contrast-to-noise ratio 
(CNR), and enhanced low-contrast detectability.39

	 The resultant TrueFidelity™ CT images evidently improve 
the image quality compared to FBP and IR image reconstruction 
methods. Furthermore, it carries great potential for obtaining CT 
images at reduced dose levels whilst maintaining high diagnostic 
image quality, which previously limited other CT reconstruction 
techniques in areas such as low-dose imaging. 

35 Systematic Review | Volume 4 | Issue 2|

Table 2. Summary of Several AI-based CT Image Reconstruction Proposals

References Year Purpose Proposal

Han et al34 2016
Artefact reduction 
Structure preservation 
Faster computational speeds

Deep residual learning architecture for sparse-view CT reconstruction 
based on a persistent homology analysis to remove streaking artefacts 
and achieve faster computational speeds

Chen et al31 2017
Noise suppression 
Artefact reduction 
Structure preservation

Combining the autoencoder, deconvolution network, and shortcut 
connections into the residual encoder-decoder convolutional neural 
network (RED-CNN) for low-dose CT imaging

Chen et al36 2017
Noise suppression 
Artefact reduction 
Structure preservation

Deep CNN to map low-dose CT towards routine-dose CT in a patch-
by-patch manner

Cong et al32 2017 Artefact reduction
Deep learning-based reconstruction method to learn an accurate linear 
integral approach, realise monochromatic imaging, and overcome beam 
hardening artefacts

Du et al37 2017
Noise suppression 
Structure preservation

Deep network architecture known as stacked competitive network 
(SCN) which comprises several competitive blocks to introduce a 
multi-scale processing mechanism to further improve the ability of the 
traditional CNN in suppressing noise and preserving structures

Gu et al6 2017 Artefact reduction 
Structure preservation

A multi-scale wavelet-domain residual learning network for limited-angle 
CT reconstruction to eliminate artefacts and preserve edges

Kang et al33 2017 Noise suppression Deep CNN using directional wavelets to detect and remove noise 
patterns in low-dose CT images

Wolterink et al35 2017 Noise suppression Training a CNN together with an adversarial CNN to estimate routine 
dose from low-dose CT images and hence suppress noise

Wu et al8 2017
Optimise IR methods 
Noise suppression 
Structure preservation

Iterative low-dose CT reconstruction with k-sparse autoencoders 
(KSAE) trained by artificial neural network

Ahn et al7 2018 Optimise IR methods 
Noise suppression 

Deep learning IR approach involving a synthetic sinogram-based noise 
simulation approach for training of convolutional neural network 
(CNN) to denoise and improve image quality

Yi et al5 2018 Noise suppression Applying a sharpness-aware general adversarial network (GAN) to the 
task of denoising

Ziabari et al38 2018 Optimise IR methods Fast reconstruction algorithm using deep learning to approximate 
model-based IR (DL-MBIR)
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Advanced intelligence Clear-IQ Engine Deep Learning 
Reconstruction–Canon Medical Systems	

Canon Medical Systems was the second vendor to receive FDA 
clearance for a deep learning reconstruction (DLR) technology 
commercially known as AiCE (advanced intelligence clear-IQ en-
gine). In June 2019, the FDA cleared AiCE for their Aquilion One 
CT scanner, shortly followed by clearance for the Aquilion Preci-
sion system in July 2019, and finally the most recent approval was 
obtained in February 2020 for the Aquilion Prime SP system. The 
AiCE engine utilises a deep convolutional neural network to create 
an algorithm that redefines a balance between high image quality, 
reconstruction speed, and dose.40

	 To achieve this, the deep CNN was fitted with a math-
ematical loss function that determines any errors between the gold 
standard reference image and the output image. In this case, the 
reference image was obtained with a high tube current and was re-
constructed using MBIR. When comparing the error between the 
output and reference image, any errors were reported through the 
network where the weights of  the nodes were adjusted in order to 
correct for the disparities. This process of  input-forward and back 
propagation was repeated until the network could accurately match 
the output image to that of  the gold standard. In order to optimise 
the accuracy and robustness of  AiCE, the training set consisted of  
millions of  image pairs which contained low quality data sets, so 
that AiCE could learn how to generate high quality images from 
low quality images whilst maintaining and preserving the signal and 
spatial resolution. In the validation phase, only low quality datasets 
that were not included during training were utilised to ensure AiCE 
could reconstruct high quality images based on what it had learned. 
This was to reduce overfitting issues and ensure that the algorithm 
could be widely applicable to clinical practice.40

	 The AiCE reconstruction process first begins in the sino-
gram domain where AiCE analyses the raw data and makes modifi-
cations. In the projection domain, these modifications improve the 
signal-to-noise ratio (SNR) and reduces artefacts. The input layer, 
which is generated from reconstructing the raw data, is then fed 
into the deep CNN where it is analysed by many hidden convolu-
tional layers. Subsequently, the output of  the convolutional layer 
is fed into a fully connected layer which combines the activations 
from all the previous layers to determine which node responses 
will pass to the next layer of  the network. After passing through 
all the hidden layers of  the AiCE deep CNN, a signal image which 
separates the noise from the signal, is generated for the user.40

	 Evaluations were made for the performance of  AiCE 
DLR in studies of  workflow efficiency, low-contrast detectability, 
noise texture, and spatial resolution. The results demonstrated that 
AiCE features an image noise texture similar to that of  FBP, fast-
er reconstruction times, and improved low-contrast detectability, 
noise, and spatial resolution relative to hybrid IR.40

	 The resultant AiCE images undoubtedly demonstrate the 
effectiveness of  the DLR engine in enhancing spatial resolution 
and low-contrast detectability whilst simultaneously suppressing 
noise. With reconstruction speeds fast enough for routine clini-

cal use, AiCE seemingly surpasses previous image reconstruction 
algorithms, enabling high quality CT images at reduced doses.40

	 Overall, it is evident that the current commercial deep 
learning-based CT systems have shown considerable benefits and 
improvements in terms of  image quality which therefore enables 
further dose reductions. Table 3 outlines the key features of  both 
GE Healthcare’s TrueFidelity™ DLIR engine and Canon Medical 
System’s AiCE DLR system.

CONCLUSION

Artificial intelligence has been successfully integrated in radiologic 
tasks such as image recognition, segmentation, and classification. 
However, this has now been applied to the area of  CT image re-
construction as the use of  current image reconstruction techniques 
limits the amount of  dose reduction possible without degrading 
the quality of  the image. Therefore, the use of  AI is believed to be 
the next generation image reconstruction option as current FDA-
approved technologies have already shown favourable benefits that 
have markedly impacted healthcare. With further advances, it is ex-
pected that AI algorithms will continue to proliferate and not only 
improve the workflow of  CT image reconstruction, but also enable 
significant reductions in the radiation dose delivered to the patient.
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