Appendix

A. Feature chart

Table 7. Phonological feature values of Turkish consonants (Erguvanlı Taylan, 2015).
Abbreviations: son: sonorant, cont: continuant, strid: strident, ant: anterior, cor: coronal, lab: labial, lat: lateral, and nas: nasal

| | p | b | t | d | k | g | $\mathrm{t} \int$ | d 3 | f | v | s | z | \int | 3 | f | h | m | n | l | r | j |
| :--- |
| son | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | + | + | + | + | + |
| voice | - | + | - | + | - | + | - | + | - | + | - | + | - | + | + | - | + | + | + | + | + |
| cont | - | - | - | - | - | - | - | - | + | + | + | + | + | + | + | + | - | - | + | + | + |
| strid | - | - | - | - | - | - | + | + | + | + | + | + | + | + | - | - | - | - | - | - | - |
| ant | + | + | + | + | - | - | - | - | + | + | + | + | - | - | - | - | + | + | - | + | - |
| cor | - | - | + | + | - | - | + | + | - | - | + | + | + | + | - | - | - | + | - | + | - |
| lab | + | + | - | - | - | - | - | - | + | + | - | - | - | - | - | - | + | - | - | - | - |
| high | - | - | - | - | + | + | + | + | - | - | - | - | + | + | + | - | - | - | + | - | + |
| back | - | - | - | - | + | + | - | - | - | - | - | - | - | - | + | - | - | - | - | - | - |
| lat | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | + | - | - |
| las | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | + | + | - | - | - |

B. Variable exclusion

Aestheticising: Demircan (1987) proposed a factor called distributional balance or aestheticising. This factor states that speakers would choose a linking consonant that would balance the distribution of features or segments across the reduplicated form. This factor is related to the total identity and partial identity variables. An avoidance in identical features or segments to those of the base form will maintain a balance distribtuion of segments or features. In other words, given the number of all possible features/segments in the reduplicated form, the best linking consonant would minimise an excessive presence of any feature/segment. Under a different interpretation, Wedel (1999) suggests that there is a tendency to balance the word-level sonority, such that speakers would select a linking consonant to balance the overall sonority of the reduplicated form. In the current study we excluded this factor since our focus was on the identity avoidance effect and it has been partially captured by our existing identity variables.
Avoiding phrase formation: Demircan (1987) observed that speakers would avoid a reduplicated form that forms a meaningful phrase. For instance, Demircan suggests that the reason tatl 'sweet' would be reduplicated as tap-tatll and not tam-tatl is because the latter would result in a reduplicated form, i.e., tam 'full, exact', which is an existing lexical item in Turkish. For this reason, $-m$ is avoided as the LC in this particular instance. In the current study we excluded this factor since our focus was on the identity avoidance effect and this was left for future work.
Vowel height effect: Wedel (1999) proposed an articulatory markedness factor concerning the height of the first vowel in the base form and the linking consonant. The observation was that [s] and [m] are used when the first vowel is a high/mid vowel, while only [s] is used in the context of a low vowel. The articulatory explanation is that the lip closure required for [m] is further away from the jaw position required for a low vowel than for a high or mid vowel. While we have considered articulatory/perceptual markedness, our inclusion of transitional phonotactic probability covers only the linking consonant and the initial consonant. Following almost all previous studies (e.g., Yu, 1999), vowel features were excluded in the current study and were left for future work.

C. Descriptive statistics

Table 8. Mean (μ) and standard deviation (σ) of acceptability ratings by item groups (rows) and by linking consonants (columns)

Item group	$[\mathrm{p}]$		$[\mathrm{s}]$		$[\mathrm{m}]$		$[\mathrm{r}]$	
	μ	σ	μ	σ	μ	σ	μ	σ
$\mathrm{C}_{1} \mathrm{C}_{2}$	4.8238	2.5023	3.4090	2.4937	3.3466	2.4466	1.5124	1.2405
$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	4.8386	2.4124	3.5218	2.5124	3.1855	2.3566	1.8382	1.7104
$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	4.7639	2.4231	4.0388	2.4842	2.8835	2.1946	2.0113	1.8725

Table 9. Descriptive statistics of variables for each of the three item groups. T: true; F: false; μ : mean; σ : standard deviation

	Variable	$\mathrm{C}_{1} \mathrm{C}_{2}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$
	Response	$\mu: 3.273, \sigma: 2.526$	$\mu: 3.346, \sigma: 2.508$	$\mu: 3.424, \sigma: 2.491$
C_{1}	Total identity	T: 398, F: 6526	T: 541, F: 8903	T: 216, F: 4732
	Sum featural identity	$\mu: 1.423, \sigma: 1.235$	$\mu: 1.488, \sigma: 1.139$	$\mu: 1.362, \sigma: 1.098$
	Sonorant identity	T: 318, F: 6606	T: 576, F: 8868	T: 418, F: 4530
	Voice identity	T: 1636, F: 5288	T: 2338, F: 7106	T: 1470, F: 3478
	Continuant identity	T: 796, F: 6128	T: 1672, F: 7772	T: 674, F: 4274
	Strident identity	T: 357, F: 6567	T: 910, F: 8534	T: 247, F: 4701
	Anterior identity	T: 4392, F: 2532	T: 5156, F: 4288	T: 2460, F: 2488
	Coronal identity	T: 1542, F: 5382	T: 2554, F: 6890	T: 974, F: 3974
	Labial identity	T: 732, F: 6192	T: 842, F: 8602	T: 494, F: 4454
	Nasal identity	T: 79, F: 6845	-	-
C_{2}	Total identity	T: 563, F: 6361	T: 631, F: 8813	T: 572, F: 4376
	Sum featural identity	$\mu: 1.792, \sigma: 1.479$	$\mu: 2.046, \sigma: 1.342$	$\mu: 2.325, \sigma: 1.474$
	Sonorant identity	T: 1384, F: 5540	T: 2440, F: 7004	T: 1402, F: 3546
	Voice identity	T: 2284, F: 4640	T: 3842, F: 5602	T: 2154, F: 2794
	Continuant identity	T: 2192, F: 4732	T: 3072, F: 6372	T: 1792, F: 3156
	Strident identity	T: 452, F: 6472	T: 616, F: 8828	T: 288, F: 4660
	Anterior identity	T: 3736, F: 3188	T: 5792, F: 3652	T: 3760, F: 1188
	Coronal identity	T: 2044, F: 4880	T: 2090, F: 7354	T: 1558, F: 3390
	Labial identity	T: 238, F: 6686	T: 1142, F: 8302	T: 416, F: 4532
	Nasal identity	T: 79, F: 6845	T: 329, F: 9115	T: 134, F: 4814
C_{3}	Total identity	-	T: 285, F: 9159	T: 206, F: 4742
	Sum featural identity	-	$\mu: 1.444, \sigma: 1.470$	$\mu: 1.668, \sigma: 1.420$
	Sonorant identity	-	T: 2064, F: 7380	T: 1388, F: 3560
	Voice identity	-	T: 2572, F: 6872	T: 1880, F: 3068
	Continuant identity	-	T: 2216, F: 7228	T: 1242, F: 3706
	Strident identity	-	T: 488, F: 8956	T: 175, F: 4773
	Anterior identity	-	T: 3652, F: 5792	T: 1980, F: 2968
	Coronal identity	-	T: 1990, F: 7454	T: 1090, F: 3858
	Labial identity	-	T: 320, F: 9124	T: 250, F: 4698
	Nasal identity	-	T: 339, F: 9105	T: 248, F: 4700
C_{4}	Total identity	-	-	T: 166, F: 4782
	Sum featural identity	-	-	$\mu: 1.483, \sigma: 1.666$
	Sonorant identity	-	-	T: 1002, F: 3946
	Voice identity	-	-	T: 1334, F: 3614
	Continuant identity	-	-	T: 410, F: 4538
	Strident identity	-	-	T: 206, F: 4742
	Anterior identity	-	-	T: 2508, F: 2440
	Coronal identity	-	-	T: 1160, F: 3788
	Labial identity	-	-	T: 254, F: 4694
	Nasal identity	-	-	T: 462, F: 4486
	Transitional phonotactic probability	$\mu: 4.737, \sigma: 1.201$	$\mu: 4.576, \sigma: 1.177$	$\mu: 4.506, \sigma: 1.155$

D. Pairwise association

Table 10 summarises the pairwise association results between the response variable and each of the predictors in Section 2.3 .1 for each of the three item groups. In the two-consonant group, the total identity variables and sum featural identity variables of C_{1} and C_{2} are all
significant and have negative coefficients. This suggests that they have an identity avoidance effect on the linking consonants as expected. Most individual featural identity variables are significant, except for the anterior identity of C_{1}, the strident identity, the anterior identity, and the coronal identity of C_{2}. Of the significant individual featural identity variables, only the voice identity of $\mathrm{C}_{1}(\hat{\beta}=0.4045)$ has a positive coefficient.

In the three-consonant group, the total identity variables and sum featural identity variables of $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} are all significant and have negative coefficients. All individual featural identity variables are significant, except for the anterior identity of C_{2}, the continuant identity, the anterior identity, and the coronal identity of C_{3}. All of the significant individual featural identity variables have negative coefficients.

In the four-consonant group, the total identity variables and sum featural identity variables are all significant, except for the total identity of C_{4}. Amongst the significant total identity variables and sum featural identity variables, only the sum featural identity of C_{3} ($\hat{\beta}=0.1581$) has a positive coefficient. All but six individual featural identity variables were insignificant - the nasal identity of C_{2}, the sonorant identity, and the anterior identity of C_{3}, and the voice identity, the anterior identity, and the labial identity of C_{4}. Of the significant individual featural identity variables, six have positive coefficients - the strident identity $(\hat{\beta}=0.4654)$ and the anterior identity of $C_{2}(\hat{\beta}=0.4449)$, the continuant identity ($\hat{\beta}=01.2100$), the strident identity ($\hat{\beta}=0.9814$), and the coronal identity of $\mathrm{C}_{3}(\hat{\beta}=$ $0.6786)$ and the sonorant identity of $\mathrm{C}_{4}(\hat{\beta}=0.2887)$.

The examination of these pairwise associations indicates that a vast majority of the identity variables (total, sum or individual) have the expected identity avoidance effect. The unexpected effect of identity preference (the opposite of identity avoidance) is most systematic in C_{3} in the four-consonant group since it not only has the highest number of variables with a positive coefficient, but also their joined effect was enough to drive the direction of the sum featural identity variable ($\hat{\beta}=0.1581$).

Table 10. Pairwise association between the response variable and the predictors for each of the three item groups. β : coefficient; $\Delta \mathrm{AIC}$: AIC $_{\text {subset }}-$ AIC $_{\text {superset }}$; statistical significance is denoted by $*$ if Δ AIC >2; significant positive coefficients of identity variables are in bold.

		$\mathrm{C}_{1} \mathrm{C}_{2}$		$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$		$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	
	Variable	$\hat{\beta}$	$\triangle \mathrm{AIC}$	$\hat{\beta}$	$\triangle \mathrm{AIC}$	$\hat{\beta}$	$\triangle \mathrm{AIC}$
C_{1}	Total identity	-2.7295	484.48*	-3.3533	887.93*	-3.5667	455.92*
	Sum featural identity	-0.7498	328.65*	-0.8825	694.31*	-0.8825	344.53*
	Sonorant identity	-0.8756	27.25*	-0.3972	8.46*	-0.9690	37.38*
	Voice identity	0.4045	16.18*	-0.7797	82.03*	-0.6439	27.57*
	Continuant identity	-1.8726	264.66*	-1.8134	404.03*	-1.0103	60.91*
	Strident identity	-2.8421	406.08*	-2.3863	533.07*	-1.8935	121.56*
	Anterior identity	-0.0581	-1.80	-0.2134	4.6793*	-0.1465	-1.1464
	Coronal identity	-1.3305	171.48*	-0.7432	75.96*	-1.3190	119.26*
	Labial identity	-1.6677	202.46*	-2.2203	415.52*	-2.6013	314.25*
	Nasal identity	-2.2434	65.15*	-	-	-	-
C_{2}	Total identity	-0.8473	58.78*	-0.9739	93.90*	-0.2840	3.46*
	Sum featural identity	-0.9713	338.90*	-0.9515	577.13*	-0.4508	45.29*
	Sonorant identity	-1.6623	259.66*	-0.3711	19.25*	-0.5162	17.98*
	Voice identity	-1.7804	289.21*	-1.0600	94.13*	-1.9901	125.83*
	Continuant identity	-0.8028	62.24*	-1.0975	160.63*	-0.4688	11.29*
	Strident identity	-0.1831	-0.05	-1.5609	184.68*	0.4654	6.18*
	Anterior identity	0.0626	-1.75	0.0160	-1.97	0.4449	3.62*
	Coronal identity	-0.1313	-0.14	-1.3716	252.17*	-0.2486	2.36*
	Labial identity	-3.4130	304.18*	-1.8492	318.23*	-1.0904	44.91*
	Nasal identity	-1.8311	42.45*	-0.9771	42.34*	0.2067	-1.12
C_{3}	Total identity	-	-	-0.9235	35.30*	-0.6774	13.14*
	Sum featural identity	-	-	-0.3898	77.65*	0.1581	7.13*
	Sonorant identity	-	-	-0.8435	92.46*	0.0436	-1.86
	Voice identity	-	-	-0.5918	46.94*	-0.6155	19.26*
	Continuant identity	-	-	0.1541	1.63	1.2100	107.80*
	Strident identity	-	-	-0.3390	5.64*	0.9814	22.67*
	Anterior identity	-	-	0.0979	0.70	-0.1583	-1.24
	Coronal identity	-	-	-0.1611	1.84	0.6786	33.35*
	Labial identity	-	-	-1.5442	90.21*	-0.7171	11.98*
	Nasal identity	-	-	-1.1722	65.84*	-0.8816	24.12*
C4	Total identity	-	-	-	-	-0.1119	-1.67
	Sum featural identity	-	-	-	-	-0.3054	31.43*
	Sonorant identity	-	-	-	-	0.2887	4.03*
	Voice identity	-	-	-	-	-0.0537	-1.78
	Continuant identity	-	-	-	-	-1.1192	52.52*
	Strident identity	-	-	-	-	-1.6822	81.85*
	Anterior identity	-	-	-	-	-0.2237	-0.02
	Coronal identity	-	-	-	-	-0.8604	54.17*
	Labial identity	-	-	-	-	-0.2263	-0.57
	Nasal identity	-	-	-	-	-0.3971	5.83*
	Transitional phonotactic probability	0.2174	28.54*	-0.0110	-1.88	0.0292	-1.62

E. Random effects summaries

Table 11. Random effects summary for Study I (two-consonant base forms).

	Standard Deviation
Participant (Intercept)	0.5994
Base form (Intercept)	0.8775
Word shape (Intercept)	0.9995
Linking consonant (Intercept)	0.2457

Table 12. Random effects summary for Study I (three-consonant base forms).

	Standard Deviation
Participant (Intercept)	0.5859
Base form (Intercept)	0.7890
Word shape (Intercept)	0
Linking consonant (Intercept)	0.8209

Table 13. Random effects summary for Study I (four-consonant base forms).

	Standard Deviation
Participant (Intercept)	0.6606
Base form (Intercept)	1.1707
Word shape (Intercept)	0.2133
Linking consonant (Intercept)	1.5917

F. Model comparison for feature specificity

Table 14. Model comparison for feature specificity. $\Delta \mathrm{AIC}:$ AIC $_{\text {subset }}-$ AIC $_{\text {superset }}$

Drop from total and individual	$\mathrm{C}_{1} \mathrm{C}_{2}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$
Total identity	87.07	291.94	249.08
Individual featural identity	1016.18	1791.52	1094.96
Drop from total and sum	$\mathrm{C}_{1} \mathrm{C}_{2}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$
Total identity	150.88	376.39	339.42
Sum featural identity	461.79	1028.13	473.5

Table 15. Model comparison for feature specificity: AIC

	$\mathrm{C}_{1} \mathrm{C}_{2}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$
Total and individual featural identity	$\mathbf{2 8 8 5 3 . 6 3}$	$\mathbf{3 9 1 3 1 . 3 2}$	$\mathbf{2 0 2 9 8 . 7 8}$
Total and Sum featural identity	29408.02	39894.71	20920.24
Individual featural identity	28940.70	39423.26	20547.86
Sum featural identity	29558.90	40271.10	21259.66
Total identity	29869.81	40922.84	21393.74

G. Preference hierarchy

Demircan (1987) observed that the majority of the consonant-initial forms reduplicate with [p]. On the other hand, [m] and [s] are similarly frequent, around half of [p]. In Demircan's list, [p] was preferred for 48 , whereas [s] for 29 , and [m] for 24 items. There are nearminimal pairs such as [basbajat] 'very stale' and [bembejaz] 'very white' that suggest that the two LCs are not exclusive of each other. [r] was the rarest LC, with only six items in Demircan's list.

Yu (1999) compiled an extended corpus of 152 attested emphatic adjectives: 123 forms were taken from Hatiboğlu (1973); 121 of the 152 items were consonant initial. It was found that 46% of the forms reduplicate with [p], 29% with [s], 18% with [m], and 7% with [r]. This distribution supports the preference hierarchy. Similarly, Taneri (1990) and Kelepir (2000) reached the same conclusion regarding the preference hierarchy [p] > [s] $>[\mathrm{m}]>[\mathrm{r}]$.

Given that the previous observations were almost exclusively based on forced choice responses (but see Demir, 2018 for open-set response task, and Yu, 1998 for a small acceptability judgement task), the preference hierarchy was examined using our acceptability ratings from a larger set of items. Our data confirmed the preference hierarchy from Yu (1999). Table 8 shows that all three item groups have the same preference hierarchy - [p] $>[\mathrm{s}]>[\mathrm{m}]>[\mathrm{r}]$; however, the mean difference between [s] (3.4090) and [m] (3.3466) is small for the two-consonant group.

To test if the preference hierarchy still holds after factoring in the fixed and random effects, we examined also the random intercepts of the linking consonants of the three models (Tables 11, 12, and 13). The random intercepts of the two-consonant model suggest the same ranking as the raw ratings $-[\mathrm{p}](0.0054)>[\mathrm{s}](-0.1854)>[\mathrm{m}](-0.5839)>[\mathrm{r}]$ (-2.1823). However, the random intercepts of the three-consonant model shows a different ranking $-[\mathrm{s}](-1.9795)>[\mathrm{m}](-2.2302)>[\mathrm{p}](-2.4501)>[\mathrm{r}](-3.8005)$. The random intercepts of the four-consonant model again shows a different ranking - [s] (-4.3475) $>$ [p$]$ $(-4.5443)>[\mathrm{m}](-5.0474)>[r](-7.7329)$. While these rankings do not entirely match the preference hierarchy based on raw ratings, there remains a few similarities: In all three item groups, [p] is preferred over [r], [s] is preferred over [m], and [r] is the least preferred linking consonant. This dispreference for [r] even when we factored in the identity variables supports Wedel (1999, 2000)'s conclusion that the reduplicant with [r] might be lexicalised.

H. By-item acceptability rating

To assess the inter-rater reliability of the ratings, we computed the split-half reliability estimates. The split-half reliability is the split-half correlation, corrected with the SpearmanBrown formula. For each group of participants who completed the same list of words, participants were randomly divided into two equally-sized subgroups. To obtain a stable estimate of the split-half reliability, the splithalf.r function from the multicon library was used
to compute the mean split-half reliability with 1,000 random splits. Overall, the inter-rater reliability were high with the mean reliability of .984 averaged across the five lists (ranging from .980 to .988). This indicates that there is a high degree of agreement among the participants and that our ratings are reliable.

Ratings were first standardised for each participant to remove by-participant variations. Means and standard deviations of the standardised ratings were then computed for the four linking consonants for each word. The dominant linking consonant (LC) is shown in the second column, following by the means and standard deviations of the standardised ratings for [p], [m], [s], and [r]. The words in bold (24 words) were expected to be more variable concerning the expected linking consonants based on a meta-analysis of previous studies (not reported here) as well as the linguistic intuition of one of the authors who is a native Turkish speaker. Contrary to expectations, only a minority (six) of these 24 words were particularly variable with two linking consonants with a mean difference in standardised acceptability rating of smaller than 0.5 .

		Mean				Standard deviation			
Word	LC	[p]	[m]	[s]	[r]	[p]	[m]	[s]	[r]
başka	m	-0.5272	1.6196	-0.4173	-0.8359	0.6771	0.3509	0.5384	0.2281
bayağ1	s	-0.6010	-0.6745	1.2934	-0.8319	0.6144	0.5347	0.5357	0.4621
bayat	s	-0.465	0.1436	1.0538	-0.8986	0.7579	0.8043	0.6283	0.3457
bedava	s	-0.6607	-0.3800	0.5600	-0.9489	0.5248	0.7004	0.7927	0.2416
bej	m	-0.2402	0.4016	-0.0804	-0.8608	0.8686	0.9356	0.8742	0.3428
belli	s	-0.6313	-0.5485	1.5664	-0.7319	0.4811	0.3847	0.3420	0.2823
rabe	s	-0.4466	-0.5378	0.4468	-0.6615	0.6261	0.5198	0.8887	0.4610
errak	s	-0.3011	0.1880	1.0162	-0.6831	0.6475	0.8784	0.7776	0.4612
ter	s	-0.6782	-0.0740	1.1602	-0.6813	0.5944	0.9464	0.7204	0.5656
beyaz	m	-0.5071	1.3456	0.0340	-0.8907	0.5331	0.4213	0.6924	0.2569
bok	m	-0.7463	1.2729	0.0025	-0.8361	0.5028	0.4598	0.7243	0.4183
bol	s	-0.7065	0.0229	0.9685	-0.8326	0.5494	0.8535	0.6131	0.3949
boş	m	-0.2967	1.4897	-0.3665	-0.8080	0.8051	0.4472	0.7493	0.3446
boz	m	-0.1174	0.3516	-0.4442	-0.7480	0.8554	1.0456	0.5907	0.5002
bulanı	s	-0.4127	-0.3009	0.9995	-0.8000	0.7906	0.7058	0.6901	0.4871
buruşu	s	-0.1380	0.6910	0.7139	-0.7562	0.8461	0.9423	0.7713	0.4811
bütün	s	-0.5542	-0.3716	1.5462	-0.7274	0.4902	0.6450	0.3382	0.3904
büyük	s	-0.4886	0.0006	1.2179	-0.9242	0.5782	0.7911	0.5945	0.2743
çabuk	r	0.0352	-0.7324	0.0961	1.1485	0.8926	0.3973	0.7523	0.6907
nlı	p	. 4464	-0.5808	0.1484	-0.8038	0.2958	0.4721	0.8883	0.3856
avlak	s	. 3044	-0.5002	0.7277	-0.6720	0.8434	0.6169	0.8701	0.5505
çevik	p	0.6888	-0.5385	-0.0884	-0.0955	0.8031	0.6598	0.8318	0.8329
çevre	p	1.0130	-0.4751	-0.0254	-0.6744	0.6906	0.6471	0.7956	0.6052
çĭg	p	1.0651	-0.1656	-0.3477	-0.6815	0.6465	0.8452	0.7296	0.4188
çirkin	p	1.2560	. 0527	-0.2878	-0.8237	0.5273	0.8133	0.8329	0.3506
dil	s	0.4197	-0.4116	1.0832	-0.4875	0.8917	0.7060	0.7428	0.5949
cıliz	p	1.2310	0.0086	0.2155	-0.6714	0.4854	0.8190	0.8491	0.4142
clik	p	0.3112	-0.4685	-0.1288	-0.6153	0.8095	0.6463	0.8739	0.5271
çıplak	r	-0.2002	-0.3860	0.3361	1.1594	0.9205	0.6213	0.8445	0.7756
vik	p	0.8665	-0.0122	0.6507	-0.4215	0.8172	0.8147	0.9209	0.7738
çürük	p	1.2022	0.0527	0.1902	-0.8069	0.5198	0.8242	0.8003	0.4266
dağınık	p	1.3091	-0.5433	0.3923	-0.7048	0.4777	0.5702	0.8929	0.4841
dar	p	1.5300	-0.1174	0.4913	-0.7610	0.3165	0.8252	0.9321	0.4001

ak	p	0.5757	0.3225	-0.3013	-0.6286	1.0418	0.9839	0.7352	0.5018
rin	p	1.2945	-0.5726	-0.0784	-0.8123	0.4666	0.5872	0.7220	0.4719
dik	m	0.3626	1.3428	-0.3305	-0.7847	0.8213	0.4124	0.7288	0.4241
nç	p	0.9836	0.3556	-0.3136	-0.8170	0.8117	0.9059	0.7108	0.3960
diri	p	1.4334	-0.1021	-0.0163	-0.8585	0.3165	0.7112	0.7368	0.4235
dızlak	m	0.6966	1.3603	-0.2669	-0.5695	0.7603	0.4734	0.7890	0.5697
doğru	s	1.0487	-0.5547	1.4758	-0.7666	0.6690	0.5418	0.5317	0.3085
dolu	p	1.4137	-0.5768	0.5571	-0.9340	0.4599	0.5489	0.8254	0.2045
durgun	p	1.3010	-0.2371	0.2990	-0.8838	0.4297	0.6929	0.7683	0.2943
duru	p	1.3569	-0.3786	0.2959	-0.8380	0.4222	0.4861	0.7237	0.3416
düz	m	0.7569	1.5026	-0.6168	-0.8014	0.8346	0.3918	0.4863	0.2233
düzgï	p	1.3146	0.7020	-0.3383	-0.8274	0.4609	0.7643	0.6838	0.4272
gece	p	0.5592	-0.6303	-0.2122	-0.7771	0.9789	0.4135	0.8081	0.2988
genç	p	1.2771	-0.3042	-0.3205	-0.9137	0.5022	0.6869	0.7372	0.3266
geniss	p	1.3126	0.0137	0.1912	-0.6325	0.4397	0.8243	0.9420	0.6277
gergin	p	1.2793	-0.5253	0.4275	-0.7245	0.5818	0.6338	0.9363	0.3765
gevşek	p	1.0648	-0.3506	0.4326	-0.7233	0.6232	0.7677	0.8272	0.5028
gök	p	0.1522	-0.1676	-0.1763	-0.7611	1.0003	0.9705	0.8941	0.6020
güdük	p	0.7903	-0.1806	0.2834	-0.8007	0.7356	0.7660	0.9418	0.4695
gündüz	p	0.8907	-0.3302	-0.1542	-0.7714	0.5884	0.6578	0.7118	0.5359
gür	p	1.0520	0.0114	-0.1255	-0.4805	0.5389	0.7853	0.7678	0.7025
güzel	p	1.1055	-0.4194	-0.0485	-0.8884	0.5622	0.7192	0.7415	0.3807
kalın	p	1.5471	-0.4334	0.7206	-0.7137	0.3194	0.6333	0.8293	0.4002
kar	p	1.3319	-0.4841	-0.1315	-0.8095	0.4611	0.6091	0.7146	0.6020
katı	s	0.7612	-0.4464	1.2112	-0.6288	0.7931	0.5947	0.5680	0.6422
ke	p	0.7799	-0.1881	-0.0547	-0.8561	0.7486	0.7986	0.8262	0.3548
kirli	p	1.3843	-0.5026	-0.0559	-0.9153	0.3125	0.5447	0.7541	0.2866
kırmı	p	1.4369	-0.2852	-0.3294	-0.8618	0.2934	0.6113	0.6573	0.3834
kısa	p	1.4423	-0.0877	-0.6604	-0.7204	0.5973	0.7751	0.5572	0.3930
kıvrak	s	0.4133	-0.4943	1.4245	-0.8519	0.9090	0.5421	0.5067	0.2927
kızıl	p	1.5234	-0.0881	-0.4858	-0.7440	0.2965	0.7017	0.5689	0.2016
koca	s	0.2832	-0.6989	1.3099	-0.7407	0.8830	0.4729	0.3979	0.5213
kocama	s	0.4104	-0.6907	1.3737	-0.6524	0.7057	0.3875	0.3114	0.5568
kolay	p	1.0792	-0.5073	0.7770	-0.7694	0.7753	0.5156	0.9664	0.3609
kö	p	0.8624	-0.0364	0.3306	-0.9499	0.6911	0.7667	0.7409	0.3276
kötü	p	0.8013	-0.3623	0.3379	-0.5327	0.8109	0.5784	0.8854	0.5613
kötürüm	s	0.3724	-0.4778	0.4133	-0.3860	0.8482	0.5534	0.8766	0.7614
koyu	p	1.1976	-0.4026	0.5497	-0.8192	0.5864	0.6049	0.7079	0.3706
küçük	p	0.8366	-0.2569	0.4990	-0.8576	0.7812	0.8444	0.8547	0.3512
kuru	p	1.4436	-0.3244	-0.0584	-0.8125	0.2991	0.6007	0.6986	0.4560
mavi	s	-0.3452	-0.6842	1.6016	-0.8121	0.6445	0.4656	0.3007	0.2896
mor	s	-0.7986	-0.9545	1.4349	-0.7711	0.4128	0.3624	0.2955	0.5442
parça	s	-0.7969	-0.0176	0.0679	-0.7554	0.4433	0.8526	0.9114	0.4780
parlak	s	-0.7859	-0.4749	1.3516	-0.6788	0.4842	0.6454	0.3333	0.5260
pembe	s	-0.7016	-0.6653	1.6069	-0.7353	0.2996	0.4203	0.2826	0.2123
perişan	r	-0.6947	-0.3595	0.5774	1.3471	0.5406	0.7047	0.7662	0.3013
pis	m	-0.6734	0.7724	-0.5241	-0.5604	0.6165	0.8927	0.6985	0.5314
sade	p	1.4246	-0.3334	-0.6532	-0.8344	0.5368	0.7837	0.4449	0.2714
sağ	p	0.9654	-0.2231	-0.7780	-0.7672	0.7708	0.8179	0.2907	0.2747
sağlam	p	1.0320	-0.4185	-0.8489	-0.7116	0.6549	0.6581	0.4734	0.5546

k	p	1.1209	0.0853	-0.9345	-0.6264	0.6390	0.8184	0.2467	0.7473
sar1	p	1.4464	-0.2508	-0.8570	-0.8627	0.2958	0.5570	0.3697	0.3092
sebil	r	0.3619	-0.3128	-0.6422	0.6168	0.8268	0.6449	0.3670	0.9527
fil	r	-0.0632	-0.3815	-0.9204	1.2958	0.7996	0.6654	0.4321	0.5915
rin	p	1.2388	-0.2668	-0.8685	-0.6031	0.3946	0.6597	0.3173	0.6081
rt	p	1.0825	0.9830	-0.9223	-0.8989	0.7385	0.7518	0.2916	0.4260
silik	p	1.0689	0.2056	-0.9131	-0.9311	0.6468	0.9107	0.3884	0.3320
in	p	1.2555	-0.0839	-0.8588	-0.8077	0.4845	0.7613	0.5426	0.3961
sivri	p	1.5424	-0.0103	-0.7782	-0.7256	0.4839	0.8263	0.4123	0.3273
siyah	m	0.3335	1.6189	-0.8115	-0.8330	0.8983	0.3422	0.1677	0.1931
sicak	m	0.5997	1.1739	-0.8832	-0.8219	0.7545	0.6959	0.4587	0.4464
sığ	p	1.1698	0.2767	-0.7634	-0.7859	0.6081	0.9664	0.2901	0.3149
sık	m	0.1017	0.6797	-0.9448	-0.8777	0.9529	0.8224	0.3276	0.2956
sıkı	m	0.7686	1.3796	-0.8506	-0.6754	0.7837	0.4025	0.3477	0.4949
kın	p	0.5850	-0.0129	-0.9338	-0.9061	0.9756	0.8583	0.2662	0.3387
klam	r	-0.2542	-0.3870	-0.7664	0.7790	0.7145	0.6115	0.3380	0.9542
sıska	p	0.8703	0.1227	-0.6780	-0.6583	0.7658	0.8615	0.3467	0.4764
soğuk	p	1.3435	0.2466	-0.8328	-0.7988	0.5328	0.8582	0.2088	0.2108
lu	p	1.3186	-0.1221	-0.9461	-0.8789	0.3927	0.9096	0.2662	0.3318
takır	m	-0.2366	1.4143	0.0347	-0.7481	0.6656	0.3356	0.7942	0.4582
tam	s	0.0430	-0.5618	0.6996	-0.7265	0.8580	0.6241	0.8670	0.3717
ma	s	0.3765	-0.3826	1.4137	-0.6222	0.7811	0.7703	0.3252	0.6068
tatlı	p	1.0233	-0.2614	0.0314	-0.7454	0.7978	0.7184	0.7189	0.2723
taze	p	1.3494	-0.0831	-0.0577	-0.8435	0.3750	0.6954	0.7255	0.3690
iz	r	-0.1526	-0.5765	-0.5371	1.4664	0.7748	0.6744	0.5523	0.3765
tok	P	0.3258	0.2060	0.2081	-0.6886	0.9626	0.9087	0.8946	0.5140
top	s	-0.4289	-0.6914	0.6909	0.3371	0.8491	0.4713	0.8417	1.1187
topaç	s	-0.0306	-0.4422	0.4515	0.1675	0.9311	0.5290	0.8542	0.9788
runc	p	1.3806	-0.2706	0.1884	-0.7014	0.5625	0.6650	0.8303	0.2842
zulu	p	1.2364	-0.2069	-0.5810	-0.7145	0.6036	0.6001	0.4502	0.4739
1 n	p	1.1253	-0.4153	0.0338	-0.8208	0.6390	0.7589	0.8811	0.3551
alnız	p	1.3325	-0.3624	-0.4896	-0.7957	0.4028	0.6402	0.5621	0.3361
yanlış	p	1.2304	-0.4160	-0.2698	-0.7577	0.5236	0.5191	0.6731	0.2573
yarı	p	0.4743	-0.3967	0.1801	-0.8025	0.8729	0.7499	0.8266	0.4306
yaş	m	0.4778	0.5367	-0.5728	-0.7907	0.8819	1.0068	0.5589	0.2058
assı	p	0.8995	0.5195	-0.4644	-0.7472	0.8100	0.9900	0.5962	0.3427
yavaş	P	1.0645	-0.3271	0.2539	-0.9051	0.5633	0.6488	0.8021	0.3266
yeni	p	1.4351	-0.6550	0.0948	-0.9329	0.3034	0.5030	0.7832	0.2950
yeşil	m	0.3812	1.6140	-0.4133	-0.7888	0.9417	0.4783	0.5570	0.1856
yırtı	p	0.9290	-0.3057	0.4909	-0.9081	0.6908	0.7108	0.8667	0.2798
yoğun	p	1.1671	-0.4801	0.4598	-0.7123	0.6378	0.5484	0.9441	0.3963
yorgun	p	1.0091	-0.6846	0.6618	-0.9034	0.6784	0.4155	0.7348	0.2768
yumru	s	0.5817	-0.2130	1.0221	-0.7591	0.7622	0.6680	0.6875	0.4734
yumuşak	s	0.5435	0.3196	0.9072	-0.7306	0.7207	0.8395	0.6894	0.5479
zayif	p	1.4014	-0.4054	-0.7933	-0.7710	0.3049	0.5109	0.4504	0.5047
or	p	1.3629	-0.4034	-0.6942	-0.6904	0.5771	0.6219	0.4244	0.461

