Research Article
BibTex RIS Cite

The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage

Year 2022, Volume: 39 Issue: 2, 56 - 62, 13.06.2022
https://doi.org/10.16882/hortis.1122901

Abstract

Especially, in tomatoes occur due to low temperature stress serious yield and quality decreases in greenhouse conditions. For successful tomato cultivation under the cold stress, cultivars performances are extremely important both vegetative and reproductive growth stage. In this study, 20 tomato pure lines and 3 commercial cultivars (Cigdem F1, Anit F1 and Bestona F1) and also Solanum hirsutum (LA 1777) known as tolerant genotypes were evaluated at vegetative and reproductive stage. The studies were conducted under both the cold stress in growth chamber and the optimal temperature condition (control) in the greenhouse. They were evaluated by measuring malondialdehyde (MDA), electrolyte leakage (EL) and dry matter yield (DM) at vegetative stage. The results showed that EL rate and MDA content increased while DM decreased under the cold stress when compared with leaves of plants grown at optimal temperature. In reproductive stage, pollen viability and pollen germination were evaluated under both cold stress and control conditions for all genotypes. All the sensitive genotypes exhibited low pollen viability and pollen germination. Consequently, three pure lines were identified with low-temperature tolerant in vegetative and reproductive growth stage.

References

  • Atayee, A.R., & Noori, M.S. (2020). Alleviation of cold stress in vegetable crops. Journal of Scientific Agriculture, 4:38-44.
  • Barrero‐Gil, J., Huertas, R., Rambla, J.L., Granell, A., & Salinas, J. (2016). Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell & Environment, 39:2303-2318.
  • Boyacı, H.F., Oğuz A., Ünlü, M., Eren, A., Topçu, V., Erkal, S. (2009). Relationship between some parameters of vegetative and generative developments of parthenocarp and non-parthenocarp eggplants (Solanum melongena L.). Derim, 26:28-39.
  • Cao, X., Jiang, F., Wang, X., Zang, Y., Wu, Z. (2015). Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica, 205:569-584.
  • Caffagni, A., Pecchioni, N., Francia, E., Pagani, D., Milc, J. (2014). Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 58:283-295.
  • Domínguez, E., Cuartero, J., & Fernández-Muñoz, R. (2005). Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica, 142:253-263.
  • Duan, M., Feng, H.L., Wang, L.Y., Li, D., & Meng, Q.W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to cold stressin tomato. Journal of Plant Physiology, 169:867-877.
  • Elizondo, R., & Oyanedel, E. (2010). Field testing of tomato chilling tolerance under varying light and temperature conditions. Chilean Journal of Agricultural Research, 70:552-558.
  • FAO, (2021). Food and Agriculture Organization (FAO). FAO Statistical Databases (FAOSTAT): Crops and livestock products. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed: 02 July 2021).
  • Foolad, M.R., & Lin, G.Y. (2000). Relationship between cold tolerance during seed germination and vegetative growth in tomato: germplasm evaluation. Journal of the American Society for Horticultural Science, 125:679-683.
  • Foolad, M.R., Lin, G.Y. (2001). Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica, 122:105-111.
  • Funatsuki, H., Kawaguchi, K., Matsuba, S., Sato, Y., & Ishimoto, M. (2005). Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theoretical and Applied Genetics, 111:851-861.
  • Gökmen, Ö.Ö. (2006). Investigation of Low Temparature Stress in tomato in Respect to Antioxidative Mechanisms. MSc Thesis, Çukurova University, Adana (in Turkish).
  • Keleş, D., (2007). Characterization of Different Pepper Genotypes and Low Temperature Tolerance. PhD Thesis, Çukurova University, Adana (in Turkish).
  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press.
  • Li, Y., Tian, X., Wei, M., Shi, Q., Yang, F., & Wang, X. (2015). Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turkish Journal of Botany, 39:606-614.
  • Liu, G., Du, Q., Jiao, X., & Li, J. (2018). Irrigation at the level of evapotranspiration aids growth recovery and photosynthesis rate in tomato grown under chilling stress. Acta Physiologiae Plantarum, 40:1-11.
  • Lutts, S., Kinnet, J.M., & Bouharmont, J., (1996). NaCl induced senescence in leaves of rice cultivars differing in salinity resistance. Annual Botany, 78:389-398.
  • Ma, X., Chen, C., Yang, M., Dong, X., Lv, W., & Meng, Q. (2018). Cold-regulated protein (SlCOR413IM1) confers cold stresstolerance in tomato plants. Plant Physiology and Biochemistry, 124:29-39.
  • Maisonneuve, B., Hogenboom, N.G., & Den Nijs, A.P.M. (1986). Pollen selection in breeding tomato (Lycopersicon esculentum Mill.) for adaptation to low temperature. Euphytica, 35:983-992.
  • Malekzadeh, P., Khara, J., & Heydari, R. (2014). Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiology and Molecular Biology of Plants, 20:133-137.
  • Mulcahy, D.L., Sari-Gorla, M., & Mulcahy, G.B. (1996). Pollen selection-past, present and future. Sexual Plant Reproduction, 9:353-356.
  • Ражаметов, Ш.Н., Янг, Ы., Чо, М.Ч., Чэ, С.Ё., & Жеонг, Х.Б. (2020). Screening of pepper (Capsicum L.) seedlings tolerance to low temperature. Аграрный научный журнал, 11:78-82.
  • Peel, M.C., Finlayson, B.L., & McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11:1633-1644.
  • Picken, A.J.F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59: -13.
  • Ronga, D., Rizza, F., Badeck, F.W., Milc, J., Laviano, L., Montevecchi, G., Pecchioni, N., & Francia, E. (2018). Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 231:118-125.
  • Sayyari, M., (2012). Improving chilling resistance of cucumber seedlings by salicylic acid. American-Eurasian Journal of Agricultural & Environmental Sciences, 12: 04-209.
  • Xia, X.J., Fang, P.P., Guo, X., Qian, X.J., Zhou, J., Shi, K., Yu, J.Q. (2018). Brassinosteroid‐mediated apoplastic H2O2‐glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell & Environment, 41:1052-1064.
  • Zamir, D., & Gadish, I. (1987). Pollen selection for low temperature adaptation in tomato. Theoretical and Applied Genetics, 74:545-548.
  • Zhao, D.Y., Shen, L., Fan, B., Liu, K.L., Yu, M.M., Zheng, Y., Ding, Y., Sheng, J.P. (2009). Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. Journal of Food Science, 74:C348-C352.
Year 2022, Volume: 39 Issue: 2, 56 - 62, 13.06.2022
https://doi.org/10.16882/hortis.1122901

Abstract

References

  • Atayee, A.R., & Noori, M.S. (2020). Alleviation of cold stress in vegetable crops. Journal of Scientific Agriculture, 4:38-44.
  • Barrero‐Gil, J., Huertas, R., Rambla, J.L., Granell, A., & Salinas, J. (2016). Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell & Environment, 39:2303-2318.
  • Boyacı, H.F., Oğuz A., Ünlü, M., Eren, A., Topçu, V., Erkal, S. (2009). Relationship between some parameters of vegetative and generative developments of parthenocarp and non-parthenocarp eggplants (Solanum melongena L.). Derim, 26:28-39.
  • Cao, X., Jiang, F., Wang, X., Zang, Y., Wu, Z. (2015). Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica, 205:569-584.
  • Caffagni, A., Pecchioni, N., Francia, E., Pagani, D., Milc, J. (2014). Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 58:283-295.
  • Domínguez, E., Cuartero, J., & Fernández-Muñoz, R. (2005). Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica, 142:253-263.
  • Duan, M., Feng, H.L., Wang, L.Y., Li, D., & Meng, Q.W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to cold stressin tomato. Journal of Plant Physiology, 169:867-877.
  • Elizondo, R., & Oyanedel, E. (2010). Field testing of tomato chilling tolerance under varying light and temperature conditions. Chilean Journal of Agricultural Research, 70:552-558.
  • FAO, (2021). Food and Agriculture Organization (FAO). FAO Statistical Databases (FAOSTAT): Crops and livestock products. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed: 02 July 2021).
  • Foolad, M.R., & Lin, G.Y. (2000). Relationship between cold tolerance during seed germination and vegetative growth in tomato: germplasm evaluation. Journal of the American Society for Horticultural Science, 125:679-683.
  • Foolad, M.R., Lin, G.Y. (2001). Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica, 122:105-111.
  • Funatsuki, H., Kawaguchi, K., Matsuba, S., Sato, Y., & Ishimoto, M. (2005). Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theoretical and Applied Genetics, 111:851-861.
  • Gökmen, Ö.Ö. (2006). Investigation of Low Temparature Stress in tomato in Respect to Antioxidative Mechanisms. MSc Thesis, Çukurova University, Adana (in Turkish).
  • Keleş, D., (2007). Characterization of Different Pepper Genotypes and Low Temperature Tolerance. PhD Thesis, Çukurova University, Adana (in Turkish).
  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press.
  • Li, Y., Tian, X., Wei, M., Shi, Q., Yang, F., & Wang, X. (2015). Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turkish Journal of Botany, 39:606-614.
  • Liu, G., Du, Q., Jiao, X., & Li, J. (2018). Irrigation at the level of evapotranspiration aids growth recovery and photosynthesis rate in tomato grown under chilling stress. Acta Physiologiae Plantarum, 40:1-11.
  • Lutts, S., Kinnet, J.M., & Bouharmont, J., (1996). NaCl induced senescence in leaves of rice cultivars differing in salinity resistance. Annual Botany, 78:389-398.
  • Ma, X., Chen, C., Yang, M., Dong, X., Lv, W., & Meng, Q. (2018). Cold-regulated protein (SlCOR413IM1) confers cold stresstolerance in tomato plants. Plant Physiology and Biochemistry, 124:29-39.
  • Maisonneuve, B., Hogenboom, N.G., & Den Nijs, A.P.M. (1986). Pollen selection in breeding tomato (Lycopersicon esculentum Mill.) for adaptation to low temperature. Euphytica, 35:983-992.
  • Malekzadeh, P., Khara, J., & Heydari, R. (2014). Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiology and Molecular Biology of Plants, 20:133-137.
  • Mulcahy, D.L., Sari-Gorla, M., & Mulcahy, G.B. (1996). Pollen selection-past, present and future. Sexual Plant Reproduction, 9:353-356.
  • Ражаметов, Ш.Н., Янг, Ы., Чо, М.Ч., Чэ, С.Ё., & Жеонг, Х.Б. (2020). Screening of pepper (Capsicum L.) seedlings tolerance to low temperature. Аграрный научный журнал, 11:78-82.
  • Peel, M.C., Finlayson, B.L., & McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11:1633-1644.
  • Picken, A.J.F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59: -13.
  • Ronga, D., Rizza, F., Badeck, F.W., Milc, J., Laviano, L., Montevecchi, G., Pecchioni, N., & Francia, E. (2018). Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 231:118-125.
  • Sayyari, M., (2012). Improving chilling resistance of cucumber seedlings by salicylic acid. American-Eurasian Journal of Agricultural & Environmental Sciences, 12: 04-209.
  • Xia, X.J., Fang, P.P., Guo, X., Qian, X.J., Zhou, J., Shi, K., Yu, J.Q. (2018). Brassinosteroid‐mediated apoplastic H2O2‐glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell & Environment, 41:1052-1064.
  • Zamir, D., & Gadish, I. (1987). Pollen selection for low temperature adaptation in tomato. Theoretical and Applied Genetics, 74:545-548.
  • Zhao, D.Y., Shen, L., Fan, B., Liu, K.L., Yu, M.M., Zheng, Y., Ding, Y., Sheng, J.P. (2009). Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. Journal of Food Science, 74:C348-C352.
There are 30 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Akın Tepe This is me 0000-0003-0043-1524

Volkan Gözen This is me 0000-0002-1318-1942

Aylin Kabaş This is me 0000-0003-3983-9965

Volkan Topçu This is me 0000-0002-6445-0970

Orçun Çınar This is me 0000-0002-8356-384X

Early Pub Date May 26, 2022
Publication Date June 13, 2022
Published in Issue Year 2022 Volume: 39 Issue: 2

Cite

APA Tepe, A., Gözen, V., Kabaş, A., Topçu, V., et al. (2022). The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage. Horticultural Studies, 39(2), 56-62. https://doi.org/10.16882/hortis.1122901
AMA Tepe A, Gözen V, Kabaş A, Topçu V, Çınar O. The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage. HortiS. June 2022;39(2):56-62. doi:10.16882/hortis.1122901
Chicago Tepe, Akın, Volkan Gözen, Aylin Kabaş, Volkan Topçu, and Orçun Çınar. “The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage”. Horticultural Studies 39, no. 2 (June 2022): 56-62. https://doi.org/10.16882/hortis.1122901.
EndNote Tepe A, Gözen V, Kabaş A, Topçu V, Çınar O (June 1, 2022) The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage. Horticultural Studies 39 2 56–62.
IEEE A. Tepe, V. Gözen, A. Kabaş, V. Topçu, and O. Çınar, “The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage”, HortiS, vol. 39, no. 2, pp. 56–62, 2022, doi: 10.16882/hortis.1122901.
ISNAD Tepe, Akın et al. “The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage”. Horticultural Studies 39/2 (June 2022), 56-62. https://doi.org/10.16882/hortis.1122901.
JAMA Tepe A, Gözen V, Kabaş A, Topçu V, Çınar O. The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage. HortiS. 2022;39:56–62.
MLA Tepe, Akın et al. “The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage”. Horticultural Studies, vol. 39, no. 2, 2022, pp. 56-62, doi:10.16882/hortis.1122901.
Vancouver Tepe A, Gözen V, Kabaş A, Topçu V, Çınar O. The Performances of Some Tomato Pure Lines under Cold Stress in the Vegetative and Generative Stage. HortiS. 2022;39(2):56-62.