Skip to main content
Log in

Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

A distinctive feature of the Nhecolândia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past arid phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the “cordilhieria” areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92% of the variance). Therefore, the saline lakes of Nhecolândia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past arid phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ab’Saber, A. N. 1988. O Pantanal Mato Grossense e a teoria dos refugios. Revista Brasileira de Geografia 50 special 1–2:9–57.

    Google Scholar 

  • Alho, C. J. R., T. E. Lacher, and H. C. Gonçalves. 1988. Environmental degradation in the Pantanal ecosysthem. Bioscience 38: 164–171.

    Article  Google Scholar 

  • Almeida, F. F. M. and M. A. Lima. 1956. Excursion Guidebook 1.18th International Geography Congress, Rio de Janeiro, Brazil.

  • Brum, P. A. R. and J. C. Souza. 1985. Niveis de nutrientes minerais para gado, em lagoas no Pantanal Sul Mato-Grossense. Pesquisa Agropecuária Brasileira 20:1451–1454.

    Google Scholar 

  • Cunha, J. 1943. Análise química das águas. Cobre do Jauru: lagoas alcalinas do Pantanal. Boletim do Laboratório de Produção Mineira 6:18–19.

    Google Scholar 

  • Charlot, G. 1961. Dosage Colorimétrique des Eléments Minéraux. Principes et Méthodes. Deuxième édition, Masson, Paris, France.

    Google Scholar 

  • Bourrié, G., F. Trolard, J. M. R. Génin, A. Jaffrezic, V. Maître, and M. Abdelmoula. 1999. Iron control by equilibria between hydroxy-Green Rusts and solutions in Hydromorphic soils. Geochimica et Cosmochimica Acta 63:3417–3427.

    Article  Google Scholar 

  • Colinvaux, P. A., P. E. Oliveira, and M. B. Bush. 2000. Amazonian and neotropical plant communities on glacial time-scales. The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19:141–169.

    Article  Google Scholar 

  • Comastri, J. A. and A. Pott. 1998. Forage species introduction and evaluationon semicleared ancient levees in the Nhecolandia subregion of the Brazilian Pantanal. Pesquisa Agropecuaria Brasileira 33:793–802.

    Google Scholar 

  • Da Silva, J. D. and M. D. Abdon. 1998. Delimitation of the Brazilian Pantanal and its subregions. Pesquisa Agropecuaria Brasileria 33: 1703–1711.

    Google Scholar 

  • Droubi, A. Al, B. Fritz, J. Y. Gac, and Y. Tardy. 1980. Generalized residual alkalinity concept; Application to prediction of the chemical evolution of natural waters by evaporation. American Journal of Science 280:560–572.

    Google Scholar 

  • Eaton, F. M. 1950. Signifiance of carbonates in irrigation waters. Soil Science 69:123–133.

    Article  CAS  Google Scholar 

  • Eiten, G. 1983. Classificação da vegetação do Brasil. CNPq/Coordonação editorial, Brasilia, Brazil.

  • Fassel, V. A. 1978. Quantitative elemental analysis by plasma emission spectroscopy. Science 202:183.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, E., A. Y. Sakamoto, J. P. Queiroz Neto, H. M. Lucati, and B. Capellari. 1999. Le Pantanal da Nhecolândia» Mato Grosso. Cadre physique et dynamique hydrologique. Geografia Fisica e Dinâmica Quaternária 22:13–21.

    Google Scholar 

  • Gac, J. Y., A. Al Droubi, B. Fritz, and Y. Tardy. 1977a. Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad. Chemical Geology 19:215–228.

    Article  CAS  Google Scholar 

  • Gac, J. Y., D. Badaut, A. Al Droubi, and Y. Tardy. 1977b. Comportement du calcium, du magnesium et de la silice en solution. Précipitation de calcite magnésienne, de silice amorphe et de silicates magnésiens au cours de l’évaporation des eaux du Chari (Tchad). Sciences Géologiques Bulletin 31:185–193.

    Google Scholar 

  • Garrels, R. M. and F. T. Mackenzie. 1967. Origin of the chemical composition of some springs and lakes, in Gould R. R. ed., Equilibrium concepts in natural water Systems. Advances in Chemistry Series 67:222–242.

  • Gottgens, J. F., R. H. Fortney, J. Meyer, J. E. Perry, and B. E. Rood. 1998. The case of the Paraguay-Paraná waterway (“Hidrovia”) and its impact on the Pantanal of Brazil: a summary report to the Society of Wetlands Scientists. Wetlands Bulletin: 12–18.

  • Gran, G. 1952. Determination of the equivalence point in potentiometric titrations. Acta Chemica Scandinavica 4:559–577.

    Article  Google Scholar 

  • Hamilton, S. K., O. Corrêa de Souza, and M. E. Coutinho. 1998. Dynamic of floodplain inondation in the alluvial fan of the Taquari River (Pantanal, Brazil). Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 26:916–922.

    Google Scholar 

  • Hamilton, S. K. 1999. Potential effects of a major navigation project (Paraguay-Parana hidrovia) on inundation in the Pantanal floodplains. Regulated Rivers: Research & Management 15:289–299.

    Article  Google Scholar 

  • Hardie, L. A. and H. P. Eugster. 1970. The evolution of close basin brines. Mineralogical Society of America Special Paper 3:273–290.

    Google Scholar 

  • IBGE. 1989. Geography of Brazil. V. 1. IBGE Found. Rio de Janeiro, Brazil.

    Google Scholar 

  • Jones, B. F., H. P. Eugster, and S. L. Rettig. 1977. Hydrochemistry of the lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta 41:53–72.

    Article  CAS  Google Scholar 

  • Jones, B. F. and E. Galan. 1988. Palygorskite-sépiolite. An Hydrous phyllosilicates exclusive of Micas. Geological Society of America Reviews in Mineralogy 19:631–674.

    CAS  Google Scholar 

  • Keller, C., G. Bourrié, and J. C. Védy. 1987. Formes de l’alcalinité dans les eaux gravitaires. Influence des métaux lourds contenus dans des composts. Sciences du Sol 25:17–29.

    CAS  Google Scholar 

  • Klammer, G. 1982. Die Palaeowuste des Pantanal von Mato Grosso und die pleistozane Klimageschichte des brasilianischen Randtropen. Zeitschrift für Geomorphologie 26:393–416.

    Google Scholar 

  • Morrison, R. I. G., M. Manore, R. K. Ross, and C. R. Padovani. 2000. Identificação das lagoas salinas da região da Nhecolândia—Pantanal, através de técnicas de sensoriamento remoto—III Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal, Corumbá-MS, (Resumo):88–89.

  • Mourão, G. M. de, T. H. Ishii, and Z. M. S. Campos. 1988. Alguns factores limnológicos relacionados com a íchtiofauna de baías e salinas do pantanal da Nhecolândia, Mato Grosso do sul, Brasil. Acta Limnologica Brasiliensia 2:181–198.

    Google Scholar 

  • Ponnamperuma, F. N. 1967. The chemistry of submerged soils. Advance in Agronomy 24:173–189.

    Google Scholar 

  • Ponnamperuma, F. N., E. M. Tianco, and T. Loy. 1972. Redox equilibria in flooded soils I. The iron hydroxyde systems. Soil Science 103:374–381.

    Article  Google Scholar 

  • Por, F. D. 1995. The Pantanal of Mato Grosso (Brazil). World’s Largest Wetlands. Kluwer Academic Publisher, Monographiae Biologicae 73, Dordrecht/Boston/London.

    Google Scholar 

  • Queiroz Neto, J. P., A. Y. Sakamoto, H. M. Lucati, and E. Fernandes. 1999. Dinâmica hídrica de uma lagoa salina e seu entorno na área do Leque, Nhecolândia, Pantanal—MS. II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá, 18 a 22 novembro de 1996:144–149.

    Google Scholar 

  • Sakamoto, A. Y. 1997. Dinâmica hídrica em uma lagoa salina e seu entorno no Pantanal da Nhecolândia: contribuição ao estudo das relações entre o meio fisico e a ocupação, Fazenda São Miguel do Firme, MS. Ph.D. Thesis. University Sao Paulo, Sao Paulo, Brazil.

    Google Scholar 

  • Sakamoto, A. Y., J. P. Queiroz Neto, E. Fernandes, H. M. Lucati, and B. Capellari. 1999. Topografia de lagoas salinas e seus entornos no Pantanal de Nhecolândia. II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá, 18 a 22 novembro de 1996:127–135.

    Google Scholar 

  • Scatchard, G. 1936. Concentrated solutions of strong electrolytes, Chemical Research 19:309.

    CAS  Google Scholar 

  • Stumm, W. and J. J. Morgan. 1970. Aquatic Chemistry. An Introduction Emphasing Chemical Equilibria in Natural Waters. Wiley Interscience, New York, NY, USA.

    Google Scholar 

  • Tricart, J. 1982. El Pantanal: Un ejemplo del impacto de la Geomorphologia sobre el medio ambiente. Geografia 7:37–50.

    Google Scholar 

  • Trolard, F., J. M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, and A. Herbillon. 1997. Identification of a Green Rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochimica et Cosmochimica Acta 61:1107–1111.

    Article  CAS  Google Scholar 

  • Vallès, V. and F. Bourgeat. 1988. Geochemical determination of the gypsym requirement of cultivated sodic soils. I. Development of the thermodynamic model gypsol» simulating the irrigation watersoil chemical interactions. Arid Soil Research and Rehabilitation 2:165–177.

    Google Scholar 

  • Vallès, V., M. K. N’Diaye, A. Bernadac, and Y. Tardy. 1989. Geochemistry of water in the Kouroumari region, Mali. Al, Si and Mg in water concentrated by evaporation: development of a model. Arid Soil Research and Rehabilitation 3:21–39.

    Google Scholar 

  • Vallès, V. and A. M. De Cockeborne. 1992. Elaboration d’un logiciel de géochimie appliqué à l’étude de la qualité des eaux. Colloque “altération et restauration de la qualité des eaux continentales”, Port Leucate, 1 et 2 Oct. 1992:27–30.

  • Van Beek, C. G. E. and N. van Breemen. 1973. The alkalinity of alkali soils. The Journal of Soil Science 24:129–136.

    Article  Google Scholar 

  • Vorob’yeva, A. and S. P. Zamana. 1984. The nature of soil alkalinity and methods of determining it. Pochvovedeniye 3:134–139.

    Google Scholar 

  • Wilhelmy, M. 1958. Das Grosse Pantanal. Die Weltumschau 18:555–559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Barbiéro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbiéro, L., de Queiroz Neto, J.P., Ciornei, G. et al. Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22, 528–540 (2002). https://doi.org/10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO;2

Key Words

Navigation