Skip to main content
Log in

Environmental influences on plant species composition in ground-water seeps in the Catskill Mountains of New York

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Ground-water seeps in the Catskill Mountains are important water sources for streams and often have different chemistry than nearby surface water. Many studies have shown correlations between water chemistry and plant species composition in wetlands, but there are no such studies in the Catskill Mountain ground-water seeps. The objective of this study was to identify the chemical and physical environmental variables that most strongly influence plant cpecies composition in seeps. Environmental variables and plant species abundance were measured at 33 seeps. TWo-way INdicator SPecies ANalysis with analysis of variance and Canonical Correspondence Analysis showed that plant species composition is determined primarily by water depth and alkalinity/acidity complex gradients. Growing season changes in water chemistry were not shown to influence the plant community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Anderson, D. S., R. B. Davis, and J. A. Janssens. 1995. Relationships of bryophytes and lichens to environmental gradients in Maine peatlands. Vegetatio 120:147–159.

    Article  Google Scholar 

  • Anderson, D. S., R. B. Davis, S. C. Rooney, and C. S. Campbell. 1996. The ecology of sedges (Cyperaceae) in Maine peatlands. Bulletin of the Torrey Botanical Club 123:100–110.

    Article  Google Scholar 

  • Barbour, M. G., J. H. Burk, and W. D. Pitts. 1987. Terrestrial Plant Ecology. The Benjamin/Cummings Publishing Co, Menlo Park, CA, USA.

    Google Scholar 

  • Barnes, W. J. 1978. The distribution of floodplain herbs as influenced by annual flood elevation. Wisconsin Academy of Sciences, Arts and Letters 66:254–266.

    Google Scholar 

  • Bell, D. T. 1974. Studies on the ecology of a streamside forest: composition and distribution of vegetation beneath the tree canopy. Bulletin of the Torrey Botanical Club 101:14–20.

    Article  Google Scholar 

  • Bell, D. T. 1980. Gradient trends in the streamside forest of central Illinois. Bulletin of the Torrey Botanical Club 107:172–180.

    Article  Google Scholar 

  • Bell, D. T. and R. del Morel. 1977. Vegetation in the streamside forest of Hickory Creek, Will County, Illinois. Bulletin of the Torrey Botanical Club 104:127–135.

    Article  Google Scholar 

  • Bernard, J. M., F. K. Seischab, and H. G. Gauch Jr. 1983. Gradient analysis of the vegetation of the Byron-Bergen Swamp, a rich fen in western New York. Vegetatio 53:85–91.

    Article  Google Scholar 

  • Burns, D. A. 1998. Retention of NO3 in an upland stream environment: A mass balance approach. Biogeochemistry 40:73–96.

    Article  CAS  Google Scholar 

  • Burns, D. A., P. S. Murdoch, and G. B. Lawrence. 1998. Effect of groundwater springs on NO3 concentrations during summer in Catskill Mountain streams. Water Resources Research 34:1987–1996.

    Article  CAS  Google Scholar 

  • Craw, R. C. 1976. Streamside bryophyte zonations. New Zealand Journal of Botany 14:19–28.

    Google Scholar 

  • Crum, H. 1983. Mosses of the Great Lakes Forest (third edition) University of Michigan, Ann Arbor, MI, USA.

    Google Scholar 

  • de Blij, H. J. and P. O. Muller. 1993. Physical Geography of the Global Environment. John Wiley and Sons, Inc., New York, NY USA.

    Google Scholar 

  • Dunn, C. P. and F. Stearns. 1987. Relationship of vegetation layers to soils in southeastern Wisconsin forested wetlands. American Midland Naturalist 118:366–374.

    Article  Google Scholar 

  • Glaser, P. H., J. A. Janssens, and D. I. Siegel. 1990. The response of vegetation to chemical and hydrological gradients in the Lost River Peatlands, northern Minnesota. Journal of Ecology 78: 1021–1048.

    Article  Google Scholar 

  • Gleason, H. A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (second edition). The New York Botanical Garden, Bronx, NY, USA.

    Google Scholar 

  • Glime, J. M. 1970. Zonation of bryophytes in the headwaters of a New Hampshire stream. Rhodora 72:276–279.

    Google Scholar 

  • Haber, E. 1977. Circaea × intermedia in eastern North America with particular reference to Ontario. Canadian Journal of Botany 55:2919–2935.

    Article  Google Scholar 

  • Harris, R. R. 1986. Occurrence patterns of riparian plants and their significance to water resources development. Biological Conservation 38:273–286.

    Article  Google Scholar 

  • Hill, M. O.: 1979. TWINSPAN: A FORTRAN Program for Arranging Multivariate Data in an Ordered Table by Classification of the Individuals and Attributes. Ecology and Systematics, Cornell University, Ithaca, NY, USA.

    Google Scholar 

  • Hupp, C. R. 1982. Stream-grade variation and riparian-forest ecology along Passage Creek, Virginia. Bulletin of the Torrey Botanical Club 109:488–499.

    Article  Google Scholar 

  • Jeglum, J. K. 1971. Plant indicators of pH and water levels in peatlands at Candle Lake, Saskatchewan. Canadian Journal of Botany 49:1661–1676.

    Article  Google Scholar 

  • Johnson, A. M. and D. J. Leopold. 1994. Vascular plant species richness and rarity across a minerotrophic gradient in wetlands of St. Lawrence County, New York, USA. Biodiversity and Conservation 3:606–627.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongren (eds.). 1987. Data Analysis in Community and Landscape Ecology. Centre for Agricultural Publishing and Documentation Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Karlin, E. F. and L. L. Bliss. 1984. Variations in substrate chemistry along microtopographical and water chemistry gradients in peatlands. Canadian Journal of Botany 62:142–153.

    Article  CAS  Google Scholar 

  • Kimmerer, R. W. and T. F. H. Allen. 1982. The role of disturbance in the pattern of a riparian bryophyte community. American Midland Naturalist 107:370–383.

    Article  Google Scholar 

  • Kudish, M. 1979. Catskills Soils and Forest History. The Catskill Center for Conservation and Development Inc., Hobart, NY, USA.

    Google Scholar 

  • Likens, G. E. and F. H. Bormann. 1995. Biogeochemistry of a Forested Ecosystem. Second Edition. Springer-Verlag Inc., New York, NY, USA.

    Google Scholar 

  • Menges, E. 1986. Environmental correlates of herb species composition in five southern Wisconsin floodplain forests. American Midland Naturalist 115:106–117.

    Article  Google Scholar 

  • Menges, E. S. and D. M. Waller. 1983. Plant strategies in relation to elevation and light in floodplain herbs. American Naturalist 122:454–473.

    Article  Google Scholar 

  • Motzkin, G. 1994. Calcareous fens of western New England and adjacent New York State. Rhodora 96:44–68.

    Google Scholar 

  • Muotka, T. and R. Virtanen. 1995. The stream as a habitat template for bryophytes: species distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biology 33:141–160.

    Article  Google Scholar 

  • Murdoch, P. S. and J. L. Stoddard. 1993. Chemical characteristics and temporal trends in eight streams of the Catskill Mountains, New York. Water, Air, Soil Pollution 67:367–395.

    Article  CAS  Google Scholar 

  • Palmer, M. W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74:2215–2230.

    Article  Google Scholar 

  • Paratley, R. D. and T. J. Fahey. 1986. Vegetation-environment relations in a conifer swamp in central New York. Bulletin of the Torrey Botanical Club 113:357–371.

    Article  Google Scholar 

  • Parsons, S. E. and S. Ware. 1982. Edaphic factors and vegetation in Virginia coastal plain swamps. Bulletin of the Torrey Botanical Club 109:365–370.

    Article  Google Scholar 

  • Rice, K. C. and O. P. Bricker. 1995. Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern USA. Journal of Hydrology 170: 137–158.

    Article  CAS  Google Scholar 

  • Robach, F., G. Thiebaut, M. Tremolieres, and S. Muller. 1996. A reference system for continental running waters: plant communities as bioindicators of increasing eutrophication in alkaline and acidic waters in north-east France. Hydrobiologia 340:67–76.

    Article  CAS  Google Scholar 

  • Schuster, R. M. 1974. The Hepaticae and Antherocerotae of North America: East of the Hundredth Meridian Volume 3. Columbia University Press, New York, NY, USA and London, UK.

    Google Scholar 

  • Simpson, R. L., M. A. Leck, and V. T. Parker. 1985. The comparative ecology of Impatiens capensis Meerb. (Balsaminaceae) in central New Jersey. Bulletin of the Torrey Botanical Club 112: 295–311.

    Article  Google Scholar 

  • Suren, A. M. 1996. Bryophyte distribution patterns in relation to macro-, meso-, and microscale variables in South Island, New Zealand streams. New Zealand Journal of Marine and Freshwater Research 30:501–523.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1987–1992. CANOCO- a FORTRAN program for canonical community ordination. Microcomputer Power. Ithaca, NY, USA.

    Google Scholar 

  • Tornes, L. A. 1979. Soil Survey of Ulster County, New York, U.S. Department of Agriculture Soil Conservation Service. U.S. Government. Printing Office, Washington, DC, USA.

    Google Scholar 

  • van Dam, H. and A. Mertens. 1995. Long-term changes of diatoms and chemistry in headwater streams polluted by atmospheric deposition of sulphur and nitrogen compounds. Freshwater Biology 34:579–600.

    Article  Google Scholar 

  • Virtanen, V. 1995. Floristic composition and habitat ecology of stream bryophytes in Lohja parish, southern Finland. Annales Botanici Fennici 32:179–192.

    Google Scholar 

  • Vitt, D. H. and W. L. Chee. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens in Alberta, Canada. Vegetatio 89:97–106.

    Article  Google Scholar 

  • Vitt, D. H., J. M. Glime, and C. LaFarge-England. 1986. Bryophyte vegetation and habitat gradients of montane streams in western Canada. Hikobia 9:367–385.

    Google Scholar 

  • Vitt, D. H., D. G. Horton, N. G. Slack, and N. Malmer. 1990. Sphagnum-dominated peatlands of the hyperoceanic British Columbia coast: patterns in surface water chemistry and vegetation. Canadian Journal of Forest Research 20:696–711.

    Article  CAS  Google Scholar 

  • Vitt, D. H. and N. G. Slack. 1975. An analysis of the vegetation of sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Canadian Journal of Botany 53:332–359.

    Article  Google Scholar 

  • Walbridge, M. R. 1994. Plant community composition and surface water chemistry of fen peatlands in West Virginia’s Appalachian Plateau. Water, Air and Soil Pollution 77:247–270.

    Article  CAS  Google Scholar 

  • Whittaker, R. H. 1966. Gradient analysis of vegetation. Biological Review 49:207–264.

    Google Scholar 

  • Williams, J. B. and J. E. Pinder. 1990. Ground water flow and runoff in a coastal plain stream. Water Resources Bulletin 26:343–352.

    Google Scholar 

  • Winsor, J. 1983. Persistence by habitat dominance in the annual Impatiens capensis (Balsaminaceae). Journal of Ecology 71:451–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.R., Raynal, D.J. & Leopold, D.J. Environmental influences on plant species composition in ground-water seeps in the Catskill Mountains of New York. Wetlands 21, 125–134 (2001). https://doi.org/10.1672/0277-5212(2001)021[0125:EIOPSC]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2001)021[0125:EIOPSC]2.0.CO;2

Key words

Navigation