Skip to main content

Advertisement

Log in

Benthic community structure in stands of Typha angustifolia and herbicide-treated and untreated Phragmites australis

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We compared benthic community structure among stands of Typha angustifolia (narrow-leaf cattail) and herbicide-treated (Glypro) and untreated Phragmites australis (common reed) over two summers in a Lake Erie coastal wetland (i.e., drowned river mouth). Both macrophytes are invasives, but only Phragmites is currently controlled by herbicides because of its reputed “undesirable” effects on wetland community structure and function. Macroinvertebrate diversity was similar among stand types and relatively high (Shannon-Weaver indices ∼2.6–4.2), probably because of high system primary productivity and a mix of lentic and riverine species. Proportions of macroinvertebrate functional feeding groups were also similar, but Jaccard’s similarity indices were relatively low (29%–57%), suggesting macroinvertebrate compositional differences among stand types. Coleopterans particularly affected species presence/absence patterns, but their presence was associated with low water level rather than hydrophyte type per se. Moreover, total macroinvertebrate densities were greater in both Phragmites treatments than in Typha; a pattern generated mostly by gastropods (≥ 95% Gyraulus deflectus and Physella gyrina) and chironomids. Microalgal food supply likely plays a part in explaining these density differences, given diatom-dominated epiphyton was denser on submerged shoots of Phragmites than on Typha. Common diatom assemblages were similar among stand types, but species richness was significantly greater on untreated -Phragmites than on herbicide-treated, early senescent Phragmites and untreated-Typha. However, advanced senescence from herbicide application (∼3 months) did not apparently affect macroscale habitat suitability and structure above and below the waterline, given counts of ovipositing odonates (mostly Ischnura and Enallagma) and captures of juvenile fishes (> 90% Lepomis spp.) were similar among stand types. Overall, our results suggest that benthic community structure is comparable between similarly-aged stands (∼4 yrs old) of invading reed and cattail and is not directly or indirectly affected by Glypro application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. and S. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: response of fishes and decapod crustaceans. Estuaries 23: 633–46.

    Article  Google Scholar 

  • Able, K. W. and S. M. Hagan. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26: 40–50.

    Article  Google Scholar 

  • Amsberry, L., M. A. Baker, P. J. Ewanchuk, and M. D. Bertness. 2000. Clonal integration and the expansion of Phragmites australis. Ecological Applications 10: 1110–18.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, and K. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina. Wetlands 21: 75–92.

    Article  Google Scholar 

  • Armstrong, J., F. Afreen-Zobayed, and W. Armstrong. 1996. Phragmites die-back: sulphide- and acetic acid-induced bud and root death, lignifications, and blockages with aeration and vascular systems. New Phytologist 134: 601–14.

    Article  CAS  Google Scholar 

  • Benoit, L. K. and R. A. Askins. 1999. Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19: 194–208.

    Google Scholar 

  • Besitka, M. A. R. 1996. An ecological and historical study of Phragmites australis along the Atlantic Coast. M.S. Thesis. Drexel University, Philadelphia, PA, USA.

    Google Scholar 

  • Brigham, A. R., W. U. Brigham, and A. Gnilka. 1982. Aquatic Insects and Oligochaetes of North and South Carolina. Midwest Aquatic Enterprises, Mahomet, IL, USA.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64: 261–73.

    Article  Google Scholar 

  • Chen, C. Y., K. M. Hathaway, and C. L. Folt. 2004. Multiple stress effects of Vision herbicide, pH, and food on Zooplankton and larval amphibian species from forest wetlands. Environmental Toxicology and Chemistry 23: 823–31.

    Article  CAS  PubMed  Google Scholar 

  • Cronk, J. K. and W. J. Mitsch. 1994. Periphyton productivity on artificial and natural surfaces in constructed freshwater wetlands under different hydrologic regimes. Aquatic Botany 48: 325–41.

    Article  Google Scholar 

  • Detenbeck, N. E., R. Hermanutz, K. Allen, and M. C. Swift. 1996. Fate and effects of the herbicide atrazine in flow-through wetland mesocosms. Environmental Toxicology and Chemistry 15: 937–46.

    Article  CAS  Google Scholar 

  • Fell, P. E., R. S. Warren, J. K. Light, R. L. Rawson, Jr., and S. M. Fairley. 2003. Comparison of fish and macroinvertebrate use of Typha angustifolia, Phragmites australis, and treated Phragmites marshes along the lower Connecticut River. Estuaries 26: 534–51.

    Article  Google Scholar 

  • Fell, P. E., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, and L. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis (Cav.) Trin. ex. Steud., affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.? Journal of Experimental Marine Biology and Ecology 222: 59–77.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.

    Article  Google Scholar 

  • Gallardo, M. T., J. R. Ascher, M. J. Collier, B. B. Martin, and D. F. Martin. 1999. Effect of cattail (Typha domingensis) extracts, leachates, and selected phenolic compounds on rates of oxygen production by Salvinia (Salvinia minima). Journal of Aquatic Plant Management 37: 80–82.

    Google Scholar 

  • Gallardo, M. T., B. B. Martin, and D. F. Martin. 1998. Inhibition of water fern Salvinia minima by cattail (Typha domingensis) extracts and by 2-chlorophenol and salicylaldehyde. Journal of Chemical Ecology 24: 1483–90.

    Article  CAS  Google Scholar 

  • Gessner, M. O. 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquatic Botany 66: 9–20.

    Article  Google Scholar 

  • Giesy, J. P., S. Dobson, and K. R. Solomon. 2000. Ecotoxicological risk assessment for Roundup herbicide. Reviews of Environmental Contamination and Toxicology 167: 35–120.

    CAS  Google Scholar 

  • Goldsborough, L. G. and G. G. C. Robinson. 1983. The effect of two triazine herbicides on the productivity of freshwater marsh periphyton. Aquatic Toxicology 4: 95–112.

    Article  CAS  Google Scholar 

  • Goldsborough, L. G. and G. G. C. Robinson. 1986. Changes in periphytic algal community structure as a consequence of short herbicide exposures. Hydrobiologia 139: 177–92.

    Article  CAS  Google Scholar 

  • Graca, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies, and C. Barrios. 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–57.

    Article  Google Scholar 

  • Gratton, C. and R. F. Denno. 2005. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restoration Ecology 13: 358–72.

    Article  Google Scholar 

  • Hann, B. J. 1991. Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwater Biology 26: 87–96.

    Article  Google Scholar 

  • Hanson, S. R., D. T. Osgood, and D. J. Yozzo. 2002. Nekton use of a Phragmites australis marsh on the Hudson River, New York, USA. Wetlands 22: 326–37.

    Article  Google Scholar 

  • Harvill, M. L. 2000. Aquatic insects of Old Woman Creek Estuary. Lake Erie Protection Fund Report. Toledo, OH, USA.

  • Hellings, S. E. and J. L. Gallagher. 1992. The effects of salinity and flooding on Phragmites australis. Journal of Applied Ecology 29: 41–49.

    Article  Google Scholar 

  • Herdendorf, C. E. 1990. Great Lakes estuaries. Estuaries 13: 493–503.

    Article  Google Scholar 

  • Herdendorf, C. E., D. M. Klarer, and R. C. Herdendorf. 2004. The ecology of Old Woman Creek, Ohio: an estuarine and watershed profile. Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Columbus, OH, USA.

    Google Scholar 

  • Kashian, D. R. and T. M. Burton. 2000. A comparison of macroinvertebrates of two Great Lakes coastal wetlands: testing potential metrics for an index of ecological integrity. Journal of Great Lakes Research 26: 460–81.

    Article  Google Scholar 

  • Klarer, D. M. and D. F. Millie. 1992. Aquatic macrophytes and algae at Old Woman Creek Estuary and other Great Lakes coastal wetlands. Journal of Great Lakes Research 18: 622–33.

    Article  Google Scholar 

  • Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology Annual Review 35: 163–220.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae. 1. Teil: Naviculaceae. p. 1–876. In H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag: Stuttgart, New York.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. p. 1–610. In H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.) Süsswasserflora von Mitteleuropa, Band 2/3. VEB Gustav forthe Verlag: Stuttgart, Jena.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. p. 1–598. In H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag: Stuttgart, Jena.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. p. 1–437. In H. Ettl, G. Gärtner, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag: Stuttgart, Jena.

    Google Scholar 

  • Krieger, K. A. and D. M. Klarer. 1992. Macroinvertebrate communities of the Old Woman Creek State Nature Preserve and National Estuarine Research Reserve. Old Woman Creek National Estuarine Research Reserve Technical Report No. 9.

  • Krieger, K. A. and D. M. Klarer. 1995. Spatial and seasonal distributions of nonplanktonic aquatic invertebrates in the Old Woman Creek National Estuarine Research Reserve. NOAA Technical Memorandum, Washington, DC, USA.

    Google Scholar 

  • Kulesza, A. E. and J. R. Holomuzki. 2006. Amphipod performance responses to decaying leaf litter of Phragmites aus trails and Typha angustifolia from a Lake Erie coastal marsh. Wetlands 26: 1079–88.

    Article  Google Scholar 

  • Květ, J. and D. F. Westlake. 1998. Primary production in wetlands. p. 78–268. In D. F. Westlake, J. Květ, and A. Szczepański (eds.) The Production Ecology of Wetlands. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lake, J. C. and M. R. Leishman. 2004. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biological Conservation 117: 215–26.

    Article  Google Scholar 

  • Lynch, E. A. and K. Saltonstall. 2002. Paleocological and genetic analyses provide evidence for recent colonization of native Phragmites australis populations in a Lake Superior wetland. Wetlands 22: 637–46.

    Article  Google Scholar 

  • Marks, M., B. Lapin, and J. Randall. 1994. Phragmites australis (P. communis): threats, management, and monitoring. Natural Areas Journal 14: 285–94.

    Google Scholar 

  • Mason, C. F. and R. J. Bryant. 1975. Production, nutrient content and decomposition of Phragmites communis Trin. and Typha latifolia L. Journal of Ecology 63: 71–95.

    Article  CAS  Google Scholar 

  • McClary, M., Jr. 2004. Spartina alterniflora and Phragmites australis as habitat for the ribbed mussel, Geukensia demissa, in Saw Mill Creek of New Jersey’s Hackensack Meadowlands. Urban Habitats 2: 83–90.

    Google Scholar 

  • Merritt, R. W. and K. W. Cummins. 1996. An Introduction to the Aquatic Insects of North America, third edition. Kendall/Hunt Publishing, Dubuque, IA, USA.

    Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, and S. Findlay. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8: 89–103.

    Article  CAS  Google Scholar 

  • Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Oertli, B. and J.-B. Lachavanne. 1995. The effects of shoot age on colonization of an emergent macrophyte (Typha latifolia) by macroinvertebrates. Freshwater Biology 34: 421–31.

    Article  Google Scholar 

  • Orson, R. A., R. S. Warren, and W. A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10: 20–27.

    Article  Google Scholar 

  • Pearson, J. A. and M. J. Leoschke. 1992. Floristic composition and conservation status of fens in Iowa. Journal of Iowa Academy of Science 99: 41–52.

    Google Scholar 

  • Peckarsky, B. L., P. R. Fraissinet, M. A. Penton, and D. J. Conklin, Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, NY, USA.

    Google Scholar 

  • Pennak, R. W. 1989. Freshwater Invertebrates of the United States: Protozoa to Mollusca, third edition. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Polunin, N. V. C. 1982. Processes contributing to the decay of reed (Phragmites australis) litter in fresh water. Archiv für Hydrobiologie 94: 182–209.

    Google Scholar 

  • Raichel, D. L., K. W. Able, and J. M. Hartman. 2003. The influence of Phragmites (Common Reed) on the distribution, abundance, and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries 26: 511–21.

    Article  Google Scholar 

  • Reed, P. B. 1988. National list of plant species that occur in wetlands: Northeast (Region 1). United States Fish and Wildlife Service, Washington, DC, USA. Biological Report 88(26.1).

    Google Scholar 

  • Relyea, R. A. 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15: 618–27.

    Article  Google Scholar 

  • Robertson, T. L. and J. S. Weiss. 2005. A comparison of epifaunal communities associated with the stems of salt marsh grasses Phragmites australis and Spartina alterniflora. Wetlands 25: 1–7.

    Article  Google Scholar 

  • Rooth, J. E., J. C. Stevenson, and J. C. Cornwell. 2003. Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26: 475–83.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the USA 99: 2445–49.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, USA.

    Google Scholar 

  • Sokal, R. R. and F. J. Rohlf. 1995. Biometry, third edition. W. H. Freeman and Company, New York, NY, USA.

    Google Scholar 

  • Stevenson, R. J. 1996. The stimulation and drag of current. p. 321–40. In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Talley, T. S. and L. A. Levin. 2001. Modification of sediments and macrofauna by an invasive marsh plant. Biological Invasions 3: 51–68.

    Article  Google Scholar 

  • Templer, P., S. Findlay, and C. Wigand. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands 18: 70–78.

    Article  Google Scholar 

  • Thoma, R. F. 1997. Fish community based assessment of Ohio’s Lake Erie near shore area. Ohio Journal of Science 97: 21.

    Google Scholar 

  • Trautman, M. B. 1981. The Fishes of Ohio with Illustrated Keys, revised edition. Ohio State University Press in Collaboration with the Ohio Sea Grant Program Center for Lake Erie Area Research, Columbus, OH, USA.

    Google Scholar 

  • Trexel-Kroll, D. 2002. Succession of floating-leaf to emergent plant communities following reduced water levels in Old Woman Creek Estuary. M.S. Thesis. Miami University, Oxford, OH, USA.

    Google Scholar 

  • Turner, A. M. and J. C. Trexler. 1997. Sampling aquatic invertebrates from marshes: evaluating the options. Journal of the North American Benthological Society 16: 694–709.

    Article  Google Scholar 

  • USDA (U.S. Department of Agriculture). 2000. Glyphosate: herbicide information profile. U.S. Forest Service, Pacific Northwest Region, USA.

    Google Scholar 

  • Varga, I. 2003. Structure and changes of macroinvertebrate community colonizing decomposing rhizome litter of common reed at Lake Ferto/Neusiedler See (Hungary). Hydrobiologia 506-509: 413–20.

    Article  Google Scholar 

  • Wallwork, J. A. 1976. The Distribution and Diversity of Soil Fauna. Academic Press, London, UK.

    Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, and R. A. Fertik. 2001. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24: 90–107.

    Article  Google Scholar 

  • Wehr, J. D. and R. G. Sheath. 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, NY, USA.

    Google Scholar 

  • Westfall, M. J. and M. L. May. 2006. Damselflies of North America, revised edition. Scientific Publishers, Gainesville, FL, USA.

    Google Scholar 

  • Whyte, R. S. 1996. The vegetation dynamics of a freshwater estuary on Lake Erie: the Old Woman Creek State Nature Preserve and National Estuarine Research Reserve, Huron, Ohio. Ph.D. Dissertation. Miami University, Oxford, OH, USA.

    Google Scholar 

  • Whyte, R. S., D. A. Francko, and D. M. Klarer. 1997. Distribution of the floating-leaf macrophyte Nelumbo lutea (American water lotus) in a coastal wetland on Lake Erie. Wetlands 17: 567–73.

    Google Scholar 

  • Whyte, R. S., D. A. Francko, and D. M. Klarer. 2003. The aquatic vegetation of the Old Woman Creek National Estuarine Research Reserve (Huron, Ohio): a Lake Eriecoastal wetland. The Michigan Botanist 42: 63–84.

    Google Scholar 

  • Wilcox, K. L., S. A. Petrie, L. A. Maynard, and S. W. Meyers. 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. Journal of Great Lakes Research 29: 664–80.

    Article  Google Scholar 

  • Wilkinson, L. 2000. SYSTAT 9. SPSS, Chicago, IL, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulesza, A.E., Holomuzki, J.R. & Klarer, D.M. Benthic community structure in stands of Typha angustifolia and herbicide-treated and untreated Phragmites australis . Wetlands 28, 40–56 (2008). https://doi.org/10.1672/07-63.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-63.1

Key Words

Navigation