Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T01:50:55.860Z Has data issue: false hasContentIssue false

Experimental evidence for the species character of Calcidiscus leptoporus morphotypes

Published online by Cambridge University Press:  20 May 2016

Patrick Quinn
Affiliation:
Geological Institute, ETHZ and University of Zurich, CH-8092, Zurich, Switzerland
Hans R. Thierstein
Affiliation:
Geological Institute, ETHZ and University of Zurich, CH-8092, Zurich, Switzerland
Larry Brand
Affiliation:
Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Florida 33149
Amos Winter
Affiliation:
Department of Marine Sciences, University of Puerto Rico, P.O. Box 5000, Mayaguez, Puerto Rico 00681

Abstract

Culturing experiments of the intermediate morphotype of the cosmopolitan coccolithophore Calcidiscus leptoporus, indicate that the size of its coccosphere and of its coccoliths are affected only in a minor way by temperature. The changes observed in clones growing under different temperature and light conditions are within the range defined for this morphotype in the plankton and Holocene sediments. This outcome suggests that the three morphotypes of living C. leptoporus may be reproductively isolated species rather than stages in a life cycle of a single species or ecophenotypic adaptations of a single species with considerable morphological plasticity. Numerous extinct morphotypes of C. leptoporus have been recorded from marine sediments deposited during the last approximately 25 Ma. In the light of our experiments, these may in fact represent genetically distinct species, which experienced rapid evolution.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology, 9:390397.CrossRefGoogle Scholar
Baumann, K.-H., and Sprengel, C. 2000. Morpholoical variations of selected coccolith species in a sediment trap north of the Canary Islands. Journal of Nannoplankton Research, 22:185193.Google Scholar
Baumann, K.-H., Young, J. R., Cachão, M., and Ziveri, P. 2000. Biometric study of Coccolithus pelagicus and its palaeoenvironmental utility. Journal of Nannoplankton Research, 22:82.Google Scholar
, A. W. H., Harrison, S. M., and Lott, L. 1973. Orbulina universa (D'ORBIGNY) in the Indian Ocean. Micropaleontology, 19:150192.CrossRefGoogle Scholar
Beaufort, L. 1992. Size variations in Late Miocene Reticulofenestra and implication for palaeoclimatic interpretation, p. 339350. In Decima, F. Proto, Monechi, S., and Rio, D. (eds.), Proceedings of the INA Conference Firenze. Memorie di Scienze Geologiche, 43.Google Scholar
Bollmann, J. 1997. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Marine Micropaleontology, 29:319350.CrossRefGoogle Scholar
Bollmann, J., Baumann, K.-H., and Thierstein, H. R. 1998. Global dominance of Gephyrocapsa coccoliths in Late Pleistocene: selective dissolution, evolution, or global environmental change? Paleoceanography, 13:517529.CrossRefGoogle Scholar
Brand, L. E. 1994. Physiological ecology of marine coccolithophores, p. 3947. In Winter, A. and Siesser, W. G. (eds.), Coccolithophores. Cambridge University Press, Cambridge.Google Scholar
Brand, L., and Guillard, R. R. L. 1981. The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. Journal of Experimental Marine Biology and Ecology, 50:119132.CrossRefGoogle Scholar
Cachão, M., and Oliveira, A. 2000. (Cocco)liths versus (cocco)spheres: approaching the ecological performance of coccolithophores. Journal of Nannoplankton Research, 22:2934.Google Scholar
Darling, K. F., Wade, C. M., Kroon, D., Leigh-Brown, A. J., and Bijma, J. 1999. The diversity and disribution of modern planktic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulations. Paleoceanography, 14:312.CrossRefGoogle Scholar
Darling, K. F., Wade, C. M., Stewart, I. A., Kroon, D., Dingle, R., and Leigh-Brown, A. J. 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature, 405:4347.CrossRefGoogle ScholarPubMed
De Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J. 1999. Molecular evidence of cryptic speciation in planktonic foraminifera and their relation to oceanic provinces. Proceedings of the National Academy of Sciences, 96:28642868.CrossRefGoogle Scholar
Geisen, M., Cros, L., Probert, I., and Young, J. R. 2000. Life-cycle associations involving pairs of holococcolithophorid species: complex life-cycles or cryptic speciation? Journal of Nannoplankton Research, 22:99100.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer-Verlag, Heidelberg, 363 p.CrossRefGoogle Scholar
Huber, B. T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orgigny). Paleobiology, 23:3362.CrossRefGoogle Scholar
Janin, M.-C. 1992. Miocene variability of Calcidiscus gr. leptoporus and possible evolutionary relationship with another Coccolithaceae: Umbilicosphaera gr. Sibogae . Biosystems, 28:199–178.CrossRefGoogle ScholarPubMed
Kennet, J. P. 1976. Phenotypic variation in some Recent and late Cenozoic planktonic foraminifera, p. 160. In Hedley, R. H. and Adams, C. G. (eds.), Foraminifera, Volume 2. Academic Press, London.Google Scholar
Kleijne, A. 1993. Morphology, taxonomy and distribution of extant coccolithophorids (Calcareous nannoplankton). Proefschrift Vrije Universiteit Amsterdam, 321 p.Google Scholar
Knappertsbusch, M. 1990. Geographic distribution of modern coccolithophorids in the Mediterranean Sea and morphologic evolution of Calcidiscus leptoporus . Unpublished Ph.D. dissertation, ETH, Zurich, 141 p.Google Scholar
Knappertsbusch, M. 2000. Morphologic evolution of the coccolithophorid C. leptoporus from the Early Miocene to Recent. Journal of Paleontology, 74:712730.CrossRefGoogle Scholar
Knappertsbusch, M., Cortés, M. Y., and Thierstein, H. R. 1997. Morphologic variability of the coccolithophorid C. leptoporus in the plankton, surface sediments and from the Early Pleistocene. Marine Micropaleontology, 30:293317.CrossRefGoogle Scholar
Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H. R. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides . Paleobiology, 21:2851.CrossRefGoogle Scholar
Lidz, B. 1972. Globorotalia crassaformis morphotype variations in Atlantic and Caribbean deep-sea cores. Micropaleontology, 18:194211.CrossRefGoogle Scholar
Lohmann, G. P., and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the late Pleistocene: gradual evolution or ocean change? Paleobiology, 9:414421.CrossRefGoogle Scholar
Lohmann, H. 1920. Die Bevölkerung des Ozeans mit Plankton nach den Ergebissen der Zentrifugenfaenge waehrend der Ausreise der ‘Deutschland’, 1911, p. 77136. In Archiv für Biontologie. Gesellschaft Natur-forschender Freunde zu Berlin, 4.Google Scholar
Lopez, J. M. 1981. Data Report, OHER-OTEC Cruise, May 24–29, 1980. Center for Energy and Environmental Research, University of Puerto Rico—U.S. Department of Energy, 0–083.Google Scholar
Matsuoka, H., and Fujioka, K. 1992. Morphometric changes of the genus Gephyrocapsa at Site 790, subtropical Pacific Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 126:263269.Google Scholar
McIntyre, A., and , A. W. H. 1967. Modern Coccolithophoridae of the Atlantic Ocean—I. Placoliths and Cyrtoliths. Deep Sea Research, 14:561597.Google Scholar
McIntyre, A., , A. W. H., and Preikstas, R. 1967. Coccoliths and the Pliocene-Pleistocene boundary. Progress In Oceanography, 4:325.CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in globorotalid foraminifera. Paleobiology, 22:386405.CrossRefGoogle Scholar
Renaud, S., and Klaas, C. 2001. Seasonal variations in the morphology of the coccolithophore Calcidiscus leptoporus off Bermuda (N. Atlantic). Journal of Plankton Research, 23:779795.CrossRefGoogle Scholar
Renaud, S., Zvieri, P., and Broerse, A. T. C. 2002. Geographical and seasonal differences in morphology and dynamics of the coccolithophore Calcidiscus leptoporus . Marine Micropaleontology, 46:363385.CrossRefGoogle Scholar
Samtleben, C. 1980. Die Evolution der Coccolithophoriden-Gattung Gephyrocapsa nach Befunden im Atlantik. Paläontologisches Zeitschrift, 54:91127.CrossRefGoogle Scholar
Spencer-Cervato, C., and Thierstein, H. R. 1997. First appearance of Globorotalia truncatulinoides: cladogenesis and immigration. Marine Micropaleontology, 30:267291.CrossRefGoogle Scholar