Skip to main content
Log in

Systematics and biology of silica bodies in monocotyledons

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Many plants take up soluble monosilicic acid from the soil. Some of these plants subsequently deposit it as cell inclusions of characteristic structure. This article describes the distribution and diversity of opaline silica bodies in monocotyledons in a phylogenetic framework, together with a review of techniques used for their examination, and the ecology, function and economic applications of these cell inclusions. There are several different morphological forms of silica in monocot tissues, and the number of silica bodies per cell may also vary. The most common type is the “druse-like” spherical body, of which there is normally a single body per cell, more in some cases. Other forms include the conical type and an amorphous, fragmentary type (silica sand). Silica bodies are most commonly found either in the epidermis (e.g., in grasses, commelinas and sedges) or in the sheath cells of vascular bundles (e.g., in palms, bananas and orchids). Silica-bearing cells are most commonly associated either with subepidermal sclerenchyma or bundle-sheath sclerenchyma. Silica bodies are found only in orchids and commelinids, not in other lilioid or basal monocots. In orchids, silica bodies are entirely absent from subfamilies Vanilloideae and Orchidoideae and most Epidendroideae but present in some Cypripedioideae and in the putatively basal orchid subfamily Apostasioideae. Among commelinid monocots, silica bodies are present in all palms, Dasypogonaceae and Zingiberales but present or absent in different taxa of Poales and Commelinales, with at least four separate losses of silica bodies in Poales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Acuna-Mesen, R. &E. Garcia-Diaz. 1998. NewCuvieronius hyodon (Proboscidea: Gomphotheriidae) from the Pleistocene of Costa Rica. Revista Biol. Trop. 46: 1167–1172.

    Google Scholar 

  • Agarie, S., W. Agata, H. Uchida, F. Kubota &P. Kaufman. 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): Testing the window hypothesis. J. Exp. Bot. 47: 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Allingham, M. M., J. M. Cullen, C. H. Giles, S. K. Jain &J. S. Woods. 1958. Adsorption at inorganic surfaces, II. Adsorption of dyes and related compounds by silica. J. Appl. Chem. 8: 108–116.

    CAS  Google Scholar 

  • Amick, J. 1982. Purification of rice hulls as a source of solar grade silicon for solar cells. J. Electrochem. Soc. 129: 864–866.

    Article  CAS  Google Scholar 

  • Ancibor, E. 1995. Palmeras fósiles del Cretácico Tardío de la Patagonia Argentina (Bajo de Santa Rosa, Río Negro). Ameghiniana 32: 287–299 (Spanish; English summary).

    Google Scholar 

  • APG (Angiosperm Phylogeny Group). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.

    Article  Google Scholar 

  • APG II (Angiosperm Phytogeny Group II). 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.

    Article  Google Scholar 

  • Armitage, P. L. 1975. The extraction and identification of opal phytoliths from the teeth of ungulates. J. Archaeol. Sci. 2: 187–197.

    Article  Google Scholar 

  • Ashton, M. J. &M. M. Jones. 1976. A study of the transpiration surfaces ofAvena sterilis L. var. Algerian leaves using monosilicic acid as a tracer for water movement. Planta 130: 121–129.

    Article  Google Scholar 

  • Baker, G. 1961. Opal phytoliths and adventitious mineral particles in wheat dust. Mineral Investigations Technical Paper No. 4. CSIRO, Melbourne, Australia.

    Google Scholar 

  • —,L. H. P. Jones &I. D. Wardrop. 1959. Cause of wear in sheep’s teeth. Nature 184: 1583–1584.

    Article  PubMed  Google Scholar 

  • —,——. 1961. Opal phytoliths and mineral particles in the rumen of the sheep. Austral. J. Agric. Res. 12:462–473.

    Article  CAS  Google Scholar 

  • Balasta, M. L. F. C., C. M. Perez, B. O. Juliano, C. P. Villareal, J. N. A. Lott &D. B. Roxas. 1989. Effects of silica level on some properties ofOryza saliva straw and hull. Canad. J. Bot. 67:2356–2363.

    CAS  Google Scholar 

  • Ball, T. B., J. D. Brotherson &J. S. Gardner. 1993. A typologic and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Canad. J. Bot. 71: 1182–1192.

    Google Scholar 

  • Barthlott, W. &D. Frölich. 1983. Mikromorphologie und Orientierungsmuster epicuticularer Wachs-Kristalloide: Ein neues systematisches Merkmal bei Monokotylen. Pl. Syst. Evol. 142: 171–185.

    Article  Google Scholar 

  • Baumert, K. 1907. Experimentelle Untersuchungen über Lichtschutzeinrichtungen an grünen Blättern. Beitr. Biol. Pfl. 9: 83–162 (also diss., Erlangen, 1907).

    Google Scholar 

  • Bennett, D. M. &D. W. Parry. 1981. Electron-probe microanalysis studies of silicon in the epicarp hairs of the caryopses ofHordeum sativum Jess.,Avena saliva L.,Secale cereale L. andTriticum aestivum L. Ann. Bot. 48: 645–654.

    CAS  Google Scholar 

  • Bertoldi de Pomar, H. 1971. Ensayo de clasificación morfológica de los silicofitolitos. Ameghiniana 8: 317–328 (English summary).

    Google Scholar 

  • Bezeau, L. M., A. Johnston &S. Smoliak. 1966. Silica and protein content of mixed prairie and fescue grassland vegetation and its relationship to the incidence of silica urolithiasis. Canad. J. Pl. Sci. 46: 625–631.

    CAS  Google Scholar 

  • Bienfait, A., L. Waterkeyn &L. Ermin. 1985. Importance des verrues foliaires silicifiées dans la systématique desSelaginella: Observations en microscopie électronique à balayage (MEB). Bull. Jard. Bot. Belg. 55: 73–81.

    Article  Google Scholar 

  • Birchall, J. D. 1990. The role of silicon in biology. Chemistry in Britain 26: 141–144.

    CAS  Google Scholar 

  • Blackman, E. 1968. The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann. Bot., n.s., 32: 207–218.

    Google Scholar 

  • —. 1969. Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Canad. J. Bot. 47: 827–838.

    Article  Google Scholar 

  • —. 1971. Opaline silica bodies in the range grasses of southern Alberta. Canad. J. Bot. 49: 769–781.

    Article  Google Scholar 

  • Blinnikov, M. S. 1994. Phytolith analysis and holocene dynamics of alpine vegetation. Veröff. Geobot. Inst. Rübel 115: 23–40 (English).

    Google Scholar 

  • —,A. Busacca &C. Whitlock. 2002. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeog. Palaeoclim. Palaeoecol. 177: 77–101.

    Article  Google Scholar 

  • Bode, E., S. Kozik, U. Kunz &H. Lehmann. 1994. Comparative electron-microscopic studies on the process of silicification in leaves of 2 different grass species. Wochenschrift 101: 367–372.

    CAS  Google Scholar 

  • Bozarth, S. R. 1993. Maize (Zea mays) cob phytoliths from a Central Kansas Great Bend aspect archaeological site. Plains Anthropologist 38: 279–286.

    Google Scholar 

  • Brady, N. C. 1990. The nature and properties of soils. Ed. 10. Macmillan, New York.

    Google Scholar 

  • Brandenburg, D. M., S. D. Russell, J. R. Estes &W. F. Chissoe. 1985. Backscattered electron imaging as a technique for visualizing silica bodies in grasses. Scan. Electron Microscop. 1985(4): 1509–1517.

    Google Scholar 

  • Briggs, B. G. &L. A. S. Johnson. 2000. Hopkinsiaceae and Lyginiaceae, two new families of Poales in Western Australia, with revision ofHopkinsia andLyginia. Telopea 8: 477–502.

    Google Scholar 

  • —,A. D. Marchant, S. Gilmore &C. L. Porter. 2000. A molecular phylogeny of Restionaceae and allies. Pp. 661–671in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Brown, D. A. 1984. Prospects and limits of a phytolith key for grasses in the central United States. J. Archaeol. Sci. 11: 345–368.

    Article  Google Scholar 

  • Browning, J. &K. D. Gordon Gray. 1995. Studies in Cyperaceae in southern Africa, 26: Glume epidermal silica deposits as a character in generic delimitation ofCostularia andCyathocoma as distinct fromTetraria and other allies. S. Afr. J. Bot. 61: 66–71.

    Google Scholar 

  • —,—,S. Galen Smith &J. van Staden. 1998.Bolboschoenus glaucus (Cyperaceae), with emphasis upon Africa. Nordic J. Bot. 18: 475–482.

    Article  Google Scholar 

  • Bruhl, J. J. 1995. Sedge genera of the world: Relationships and a new classification of the Cyperaceae. Austral. Syst. Bot. 8: 125–305.

    Article  Google Scholar 

  • Bulitsch, A. 1892 [1894]. Zur Anatomie der Bromeliaceae, II. Ausscheidung von Kieselerde in den Blattepidermiszellen einiger Bromeliaceen. [In Russian] Uebers. Leist. Bot. Russland 1892, St. Petersburg 37–38; 1894. [See Just’s Jber. 21 (1): 539–540, No. 31, 1893]

  • Bush, M. B., D. R. Piperno &P. A. Colinvaux. 1989. A 6,000 year history of Amazonian maize cultivation. Nature 340: 303–305.

    Article  Google Scholar 

  • Cailin, W., H. Fujiwara, T. Udatsu &T. Linghua. 1994. Morphological features of silica bodies from motor cells in local and modern cultivated rice (Oryza saliva L.) from China. Ethnobotany 6: 77–86.

    Google Scholar 

  • Cameron, K. M. &M. W. Chase. 2000. Nuclear 18s rDNA sequences of Orchidaceae confirm the subfamilial status and circumscription of Vanilloideae. Pp. 457–464in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • —,—,W. M. Whitten, P. J. Kores, D. C. Jarell, V. A. Albert, T. Yukawa, H. G. Hüls &D. H. Goldman. 1999. A phylogenetic analysis of the Orchidaceae: Evidence from rbcL nucleotide sequences. Amer. J. Bot. 86: 208–224.

    Article  Google Scholar 

  • Carlquist, S. 1966. Anatomy of Rapateaceae—Roots and stems. Phytomorphology 16: 17–38.

    Google Scholar 

  • Carlsward, B. S., W. L. Stern, W. S. Judd &T. W. Lucansky. 1997. Comparative leaf anatomy and systematics inDendrobium, sections Aporum and Rhizobium (Orchidaceae). Int. J. PI. Sci. 158: 332–342.

    Article  Google Scholar 

  • Chandrasekhar, S., P. M. Pramada, P. Raghavan, K. G. Satyanarayana &T. N. Gupta. 2002. Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete. J. Mater. Sci. Lett. 21: 1245–1247.

    Article  CAS  Google Scholar 

  • Chapuis, J. L. 1980. Méthodes d’étude du regime alimentaire du lapin de Garenne,Oryctolagus cuniculus (L.) par l’analyse micrographique des feces. Terre et Vie 34: 159–198.

    Google Scholar 

  • Chase, M. W., M. R. Duvall, H. G. Hills, J. G. Conran, A. V. Cox, L. E. Eguiarte, J. Hartwell, M. F. Fay, L. R. Caddick, K. M. Cameron &S. Hoot. 1995a. Molecular phylogenetics of Lilianae. Pp. 109–137in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: Systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • —,D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995b. Monocot systematics: A combined analysis. Pp. 685–730in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: Systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • —,D. S. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. H. Hahn, S. Sullivan, J. Joseph, T. Givnish, K. J. Sytsma &C. Pires. 2000. Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification. Pp. 3–16in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Chen, C. &J. C. Lewin. 1969. Silicon as a nutrient element forEquisetum arvense. Canad. J. Bot. 47: 125–131.

    CAS  Google Scholar 

  • Chermezon, H. 1933. Observations sur le genreMicrodracoides. Bull. Soc. Bot. Fr. 80: 90–97.

    Google Scholar 

  • Cherouvrier, A., A. Gueguen &J.-C. Lefeuvre. 1975. Essai de détermination du regime alimentaire d’animaux herbivores à l’aide des phytolithes siliceux des Graminées et des Cyperacées: Description, apres étude en microscopie électronique à balayage, des principaux types de phytolithes rencontrés. Compt. Rend. Hebd. Acad. Sci., Paris 281: 839–842.

    Google Scholar 

  • Chevalier, L., C. Desbuquois, J. Le Lannic &M. Charrier. 2001. Poaceae in the natural diet of the snailHelix aspersa Muller (Gastropoda, Pulmonata). Compt. Rend. Hebd. Acad. Sci., ser. III, Sci. Vie, 324: 979–987.

    CAS  Google Scholar 

  • Clarke, C. B. 1908. New genera and species of Cyperaceae. Kew Bull., addit. ser., 8: 1–196.

    Google Scholar 

  • Côté, W. A. 1974. Rice husk characterization using SEM and EDXA. J. Indian Acad. Wood Sci. 5: 3–17.

    Google Scholar 

  • Crins, W. J. &P. W. Ball. 1988. Sectional limits and phylogenetic considerations inCarex Section Ceratocystis (Cyperaceae). Brittonia 40: 38–47.

    Article  Google Scholar 

  • Crüger, H. 1857. Westindische Fragmente, 9. El Cauto. Bot. Zeitung 15: 281–292, 297–308.

    Google Scholar 

  • Cummings, L. S. &A. Magennis. 1997. A phytolith and starch record of food and grit in Mayan human tooth tartar. Pp. 211–218in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografras del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Cientifícas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Cutler, D. F. 1965. Vegetative anatomy of Thurniaceae. Kew Bull. 19: 431–441.

    Article  Google Scholar 

  • —. 1969. Anatomy of the monocotyledons, IV. Juncales. Clarendon Press, Oxford.

    Google Scholar 

  • Dahlgren, R. M. T., H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons: Structure, evolution, and taxonomy. Springer-Verlag, Berlin.

    Google Scholar 

  • Davies, K. L. 1999. A preliminary survey of foliar anatomy inMaxillaria. Lindleyana 14: 126–135.

    Google Scholar 

  • Davis, K. M. C., J. A. Deuchar &D. A. Ibbitson. 1973. Adsorption of phenols from non-polar solvents onto silica gel. J. Chem. Soc. Faraday Trans., I, 69: 1117–1126.

    Article  CAS  Google Scholar 

  • Davy, H. 1814. Elements of agricultural chemistry: In a course of lectures for the Board of Agriculture. Ed. 2. J. G. Barnard, London.

    Google Scholar 

  • Dayanandan, P. 1983. Localization of silica and calcium carbonate in plants. Scan. Electron Microscop. 1983(3): 1519–1524.

    Google Scholar 

  • Deflandre, G. 1963. Les phytolithaires (Ehrenberg): Nature et signification micropaléontologique, pédologique et géologique. Protoplasma 57: 234–259.

    Article  CAS  Google Scholar 

  • Deng, D. 1998. The studies on phytolith system of Cyperaceae. Guihaia 18: 204–208 + 3 plates (Chinese; English summary).

    Google Scholar 

  • —. 2002. Studies on phytolith system ofKobresia (Cyperaceae). Guihaia 22: 394–398 + 3 plates (Chinese; English summary).

    CAS  Google Scholar 

  • Denton, M. F. 1983. Anatomical studies of the Luzulae group ofCyperus (Cyperaceae). Syst. Bot. 8: 250–262.

    Article  Google Scholar 

  • Dixon, H. H. 1894. On the vegetative organs ofVanda leres. Proc. Roy. Irish Acad., ser. 3, 3: 441–458.

    Google Scholar 

  • Djamin, A. &M. Pathak. 1967. Role of silica in resistance to the Asiatic rice borer,Chilo suppressalis (Walker), in rice varieties. J. Econ. Entomol. 60: 347–351.

    CAS  Google Scholar 

  • Doolittle, W. E. &C. D. Frederick. 1991. Phytoliths as indicators of prehistoric maize (Zea mays subsp.mays, Poaceae) cultivation. Pl. Syst. Evol. 177: 175–184.

    Article  Google Scholar 

  • Dormaar, J. F. &L. E. Lutwick. 1969. Infrared spectra of humic acids and opal phytoliths as indicators of palaeosols. Canad. J. Soil Sci. 49: 29–37.

    CAS  Google Scholar 

  • Dorweiler, J. E. &J. Doebley. 1997. Developmental analysis of teosinte glume architecture. 1: A key locus in the evolution of maize (Poaceae). Amer. J. Bot. 84: 1313–1322.

    Article  Google Scholar 

  • Dressler, R. L. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland, OR.

    Google Scholar 

  • — &S. L. Cook. 1988. Conical silica bodies inEria javanica. Lindleyana 3: 224–225.

    Google Scholar 

  • Drum, R. W. 1968. Electron microscopy of opaline phytoliths inPhragmites and other Gramineae. Amer. J. Bot. 55: 713 (abstract).

    Google Scholar 

  • Dunne, T. 1978. Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274: 244–246.

    Article  CAS  Google Scholar 

  • Duval-Jouve, J. 1873a. Sur une forme de cellules épidermiques qui paraissent propres aux Cyperacées. Bull. Soc. Bot. Fr. 20: 91–95.

    Google Scholar 

  • —. 1873b. Dieselbe Arbeit mit einem Nachsatze. Mem. Acad. Sci. Lett. Montpellier 8: 227.

    Google Scholar 

  • Eberwein, R. 1903. Zur Anatomie des Blattes vonBorassus flabelliformis. Sitzungsber. Akad. Wiss. Wien 112:67–76.

    Google Scholar 

  • Ehrenberg, C. G. 1841. Nachtrag zu dem Vortrage über Verbreitung und Einfluss des mikroskopischen Lebens in Süd- und Nordamerika. Monatsber. Preuss. Akad. Wiss. Berlin, 139–144.

    Google Scholar 

  • Ernst, W. H. O., R. D. Vis &F. Piccoli. 1995. Silicon in developing nuts of the sedgeSchoenus nigricans. J. Pl. Physiol. 146: 481–488.

    CAS  Google Scholar 

  • Espinoza de Pernia, N. 1987. Cristales y silice en maderas dicotiledóneas de Latinoamérica. Pittieria 15: 13–65.

    Google Scholar 

  • Evans, T. M., R. B. Faden, M. G. Simpson &K. J. Sytsma. 2000. Phylogenetic relationships in the Commeünaceae, I: A cladistic analysis of morphological data. Syst. Bot. 25: 668–691.

    Article  Google Scholar 

  • Exley, C. &J. D. Birchall. 1992. Hydroxyaluminosilicate formation in solutions of low total aluminium concentration. Polyhedron 11: 1901–1907.

    Article  CAS  Google Scholar 

  • ——. 1993. A mechanism of hydroxyaluminosilicate formation. Polyhedron 12: 1007–1017.

    Article  CAS  Google Scholar 

  • Faden, R. B. &K. E. Inman. 1996. Leaf anatomy of the African genera of Commelinaceae:Anthericopsis andMurdannia. Pp. 464–471in L. J. G. van der Maesen, X. M. van der Bürgt & J. M. van Medenbach de Rooy (eds.), The biodiversity of African plants: Proceedings, XIVth AETFAT Congress, 22–27 August 1994, Wageningen, The Netherlands. Kluwer Academic, Dordrecht, Germany.

    Google Scholar 

  • Fahn, A. 1954. The anatomical structure of the Xanthorrhoeaceae Dumort. J. Linn. Soc., Bot. 55: 158–184.

    Article  Google Scholar 

  • Fay, M. F., P. J. Rudall, S. Sullivan, K. L. D. Stobart, A. Y. Bruijn, G. Reeves, F. Qamaruz Zaman, W.-P. Hong, J. Joseph, W. J. Hahn, J. G. Conran &M. W. Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. Pp. 360–371in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Franklin, E. F. 1979. A note on the hairy achenes of four African species ofScleria Bergius (Cyperaceae). Bot. J. Linn. Soc. 79:333–341.

    Article  Google Scholar 

  • —. 1981. SEM examination of silica (Si02) deposits isolated from achenes ofScleria (Cyperaceae). Proc. Electron Microsc. Soc. S. Afr. 11: 147–148.

    Google Scholar 

  • Fredlund, G. G. &L. T. Tieszen. 1994. Modem phytolith assemblages from the North American Great Plains. J. Biogeog. 21: 321–335.

    Article  Google Scholar 

  • Freudenstein, J. V. &F. N. Rasmussen. 1999. What does morphology tell us about orchid relationships? A cladistic analysis. Amer. J. Bot. 86: 225–248.

    Article  Google Scholar 

  • —,D. M. Senyo &M. W. Chase. 2000. Mitochondrial DNA and relationships in the Orchidaceae. Pp. 421–429in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Frohnmeyer, M. 1914. Die Entstehung und Ausbildung der Kieselzellen bei den Gramineen. Biblioth. Bot. 21, Heft 86: 1–41.

    Google Scholar 

  • Frölich, D. &W. Barthlott. 1988. Mikromorphologie der epicuticularen Wachse und das System der Monokotylen. Trop. Subtrop. Pflwelt 63: 1–135 (English summary).

    Google Scholar 

  • Fujiwara, H. &A. Sasaki. 1978. Fundamental studies in plant opal analysis (2): The shape of the silica bodies ofOryza. Archaeol. Nat. Sci. 11: 9–20.

    Google Scholar 

  • —,Y. I. Sato, H. Kaidama &T. Udatsu. 1990. Studies on the historical change of rice strains by the morphological analysis of plant opal. J. Archaeol. Soc. Nippon 75: 93–102.

    Google Scholar 

  • Gali Muhtasib. H. U., C. C. Smith &J. J. Higgins. 1992. The effect of silica in grasses on the feeding behavior of the prairie vole,Microtus ochrogaster. Ecology 73: 1724–1729.

    Article  Google Scholar 

  • Gartner, S., C. Chariot &N. Paris-Pireyre. 1984. Microanalyse de la silice et résistance à la verse mécanique de blé tendre. Physiol. Vég. 22: 811–820.

    CAS  Google Scholar 

  • Gattuso, M. A., S. J. Gattuso &A. M. Ferri. 1998 [1999]. Anatomical study on the origin and development of the crown and silica deposition in Johnsongrass (Sorghum halepense (L.) Pers.). Phytomorphology 48: 357–370.

    Google Scholar 

  • Ghose, M. &B. M. Johri. 1987. Cell inclusions in vegetative structure of young palms. Proc. Indian Natl. Sci. Acad., B, 53: 193–196.

    Google Scholar 

  • Ginieis, C. 1964. Les stegmates: Leur origine, leur développement, leur répartition. Bull. Soc. Linn. Lyon 33: 282–294, 304–307.

    CAS  Google Scholar 

  • Givnish, T., T. M. Evans, J. C. Pires &K. J. Sytsma. 1999. Polyphyly and covergent morphological evolution in Commelinales and Commelinidae: Evidence from rbcL sequence data. Molec. Phylog. Evol. 12: 360–385.

    Article  CAS  Google Scholar 

  • Gobetz, K. E. &S. R. Bozarth. 2001. Implications for late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quaternary Res. 55: 115–122.

    Article  Google Scholar 

  • Goetghebeur, P. 1986. Genera Cyperacearum: Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. Thesis, Rijksuniversiteit Gent.

  • —. 1998. Cyperaceae. Pp. 141–190in K. Kubitzki (ed.), The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.

    Google Scholar 

  • — &J. Coudijzer. 1984. Studies in Cyperaceae, 3:Fimbristylis andAbildgaardia in Central Africa. Bull. Jard. Bot. Belg. 54: 65–89.

    Article  Google Scholar 

  • ——. 1985. Studies in Cyperaceae, 5: The genusBulbostylis in Central Africa. Bull. Jard. Bot. Belg. 55: 207–259.

    Article  Google Scholar 

  • — &A. Van den Borre. 1989. Studies in Cyperaceae, 8: A revision ofLipocarpha, includingHemicarpha andRikliella. Wageningen Agric. Univ. Pap. 89(1): 1–87.

    Google Scholar 

  • Goldblatt, P., J. E. Henrich &P. Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phylogenetic significance. Ann. Missouri Bot. Gard. 71: 1013–1020.

    Article  Google Scholar 

  • Govindarajalu, E. 1966. The systematic anatomy of South Indian Cyperaceae:Bulbostylis Kunth. J. Linn. Soc, Bot. 59: 289–304.

    Article  Google Scholar 

  • —. 1969a. The systematic anatomy of South Indian Cyperaceae.Fuirena Rottb. Bot. J. Linn. Soc. 62: 27–40.

    Article  Google Scholar 

  • —. 1969b. Observations on new kinds of silica deposits inRhynchospora spp. Proc. Indian Acad. Sci., B, 70: 28–36.

    Google Scholar 

  • —. 1975. The systematic anatomy of South Indian Cyperaceae:Eleocharis R.Br.,Rhynchospora Vahl andScleria Bergius. Adansonia, ser. 2, 14: 581–632.

    Google Scholar 

  • GPWG (Grass Phytogeny Working Group). 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 88: 373–457.

    Article  Google Scholar 

  • Graven, P., C. G. de Koster, J. J. Boon &F. Bouman. 1996. Structure and macromolecular composition of the seed coat of the Musaceae. Ann. Bot. 77: 105–122.

    Article  CAS  Google Scholar 

  • Grob, A. 1896. Beiträge zur Anatomie der Epidermis der Gramineenblätter. Biblioth. Bot. 7(36): 1–64.

    Google Scholar 

  • Gueguen, A., A. Cherouvrier &J. C. Lefeuvre. 1975. Essai de détermination du régime alimentaire d’animaux herbivores à l’aide des phytolithes siliceux des Graminées et des Cyperacées, II: Application à l’étude du régime alimentaire des Orthoptères. Compt. Rend. Hebd. Acad. Sci., Paris 281: 929–932.

    Google Scholar 

  • Gugel, I. L., G. Grupe &K. H. Kunzelmann. 2001. Simulation of dental microwear: Characteristic traces by opal phytoliths give clues to ancient human dietary behavior. Amer. J. Phys. Anthropol. 114: 124–138.

    Article  CAS  Google Scholar 

  • Hanifa, A. M., T. R. Subramaniam &B. W. X. Ponnaiya. 1974. Role of silica in resistance to the leaf roller,Cnaphalocrocis medinalis Guenee, in rice. Indian J. Exp. Biol. 12: 463–465.

    CAS  Google Scholar 

  • Harbers, L. H., D. J. Raiten &G M. Paulsen. 1981. The role of plant epidermal silica as a structural inhibitor of rumen microbial digestion in steers. Nutr. Rep. Int. 24: 1057–1066.

    CAS  Google Scholar 

  • Harris, P. J. &R. D. Hartley. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8: 153–160.

    Article  CAS  Google Scholar 

  • Harvey, D. M. R. 1986. Applications of X-ray microanalysis in botanical research. Scanning Electron Microsc. 1986/3: 953–973.

    Google Scholar 

  • Hayward, D. M. &D. W. Parry. 1980. Scanning electron microscopy of silica deposits in the culms, floral bracts and awns of barley (Hordeum sativum Jess.). Ann. Bot. 46: 541–548.

    Google Scholar 

  • Heiberg, P. 1867–1868. Morphologisk-anatomisk beskrivelse ofEleocharis palustris. Bot. Tidsskr. 2: 157–225.

    Google Scholar 

  • Hering, L. 1900. Zur Anatomie der monopodialen Orchideen. Bot. Zentralbl. 84: 1–11, 35–45, 73–81, 113–122, 145–152, 177–184.

    Google Scholar 

  • Hodson, M. J. &A. Bell. 1986. The mineral relations of the lemma ofPhalaris canariensis L., with particular reference to its silicified macrohairs. Israel J. Bot. 35: 241–253.

    CAS  Google Scholar 

  • — &D. E. Evans. 1995. Aluminium/silicon interactions in higher plants. J. Exp. Bot. 46: 161–171.

    Article  CAS  Google Scholar 

  • — &A. G. Sangster. 1988. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum), I: Scanning electron microscopy and light microscopy. Canad. J. Bot. 66: 829–838.

    Google Scholar 

  • ——. 1989a. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum), II: X-ray microanalysis and backscattered electron imaging. Canad. J. Bot. 67: 281–287.

    Article  Google Scholar 

  • ——. 1989b. X-ray microanalysis of the seminal root ofSorghum bicolor with particular reference to silicon. Ann. Bot. 64: 659–667.

    Google Scholar 

  • ——. 1993. The interaction between silicon and aluminium inSorghum bicolor (L.) Moench: Growth analysis and X-ray microanalysis. Ann. Bot. 72: 389–400.

    Article  CAS  Google Scholar 

  • —,— &D. W. Parry. 1982. Silicon deposition in the inflorescence bristles and macrohairs ofSetaria italica (L.) Beauv. Ann. Bot. 50: 843–850.

    CAS  Google Scholar 

  • —,——. 1984. An ultrastructural study on the development of silicified tissues in the lemma ofPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 413–425.

    CAS  Google Scholar 

  • —,S. E. Williams &A. G. Sangster. 1997. Silica deposition in the needles of the gymnosperms, 1: Chemical analysis and light microscopy. Pp. 123–133in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Holtzmeier, M. A., W. L. Stern &W. S. Judd. 1998. Comparative anatomy and systematics of Senghas’s cushion species ofMaxillaria (Orchidaceae). Bot. J. Linn. Soc. 127: 43–82.

    Google Scholar 

  • Horrocks, M., Y. Deng, J. Ogden &D. G. Sutton. 2000. A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and phytolith analyses. J. Biogeog. 27: 1269–1277.

    Article  Google Scholar 

  • Hryniewiecki, B. & W. Kurtz. 1936. La répartition des cônes siliceux dans les cellules des Cypéracées et leur corrélation. Bull. Int. Acad. Pol. Sci. Math. Nat., ser. Bl, 33–52.

  • Huang, F. &M. Zhang. 2000. Pollen and phytolith evidence for rice cultivation during the Neolithic at Longquizhang, eastern Jianghuai, China. Veget. Hist. Archaeobot. 9: 161–168 (English).

    Article  Google Scholar 

  • Hutton, J. T. &K. Norrish. 1974. Silicon content of wheat husks in relation to water transport. Austral. J.Agric. Res. 25:203–212.

    Article  CAS  Google Scholar 

  • Iler, R. K. 1955. The colloid chemistry of silica and the silicates. Cornell Univ. Press, Ithaca, NY.

    Google Scholar 

  • Ishizuka, Y. 1971. Physiology of the rice plant. Adv. Agron. 23: 241–315.

    Article  CAS  Google Scholar 

  • Jiang, X. M. &Y. Zhou. 1989. SEM observation on crystals and silica in wood species of Chinese Gymnospermae. Acta Bot. Sin. 31: 835–840 + 1 plate (Chinese; English summary).

    Google Scholar 

  • Johnson, L. A. S. &D. F. Cutler. 1973 [1974].Empodisma: A new genus of Australasian Restionaceae. Kew Bull. 28: 381–385.

    Article  Google Scholar 

  • Jones, R. L. &A. H. Beavers. 1963. Some mineralogical and chemical properties of plant opal. Soil Sci. 96: 375–379.

    Article  CAS  Google Scholar 

  • Jones, L. H. P. &K. A. Handreck. 1965. Studies of silica in the oat plant, III: Uptake of silica from soils by the plant. Plant & Soil 23: 79–96.

    Article  CAS  Google Scholar 

  • ——. 1967. Silica in soils, plants, and animals. Adv. in Agron. 19: 107–149.

    Article  CAS  Google Scholar 

  • ——. 1969. Uptake of silica byTrifolium incarnatum in relation to the concentration in the external solution and to transpiration. Plant & Soil 30: 71–80.

    Article  CAS  Google Scholar 

  • —,A. A. Milne &J. V. Sanders. 1966. Tabashir: An opal of plant origin. Science 151: 464–466.

    Article  PubMed  CAS  Google Scholar 

  • Juan-Tresserras, J., C. Lalueza, R. Albert &M. Calvo. 1997. Identification of phytoliths from human dental remains from the Iberian Peninsula and the Balearic Islands. Pp. 197–203in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Judd, W. S., W. L. Stern &V. I. Cheadle. 1993. Phylogenetic position ofApostasia andNeuwiedia (Orchidaceae). Bot. J. Linn. Soc. 113: 87–94.

    Google Scholar 

  • Kajale, M. D. &S. P. Eksambekar. 1997. Application of phytolith analyses to a neolithic site at Budihal, district Gulbarga, South India. Pp. 219–229in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Kaphahn, S. 1904–1905. Beiträge zur Anatomie der Rhynchosporeenblätter und zur Kenntnis der Verkieselungen. Beih. Bot. Zentralbl. 18(1): 233–272.

    Google Scholar 

  • Kaufman, P. B., L. B. Petering &J. G. Smith. 1970. Ultrastructural development of cork-silica cell pairs inAvena internodal epidermis. Bot. Gaz. 131: 173–185.

    Article  Google Scholar 

  • —,W. C. Bigelow, R. Schmid &N. S. Ghosheh. 1971. Electron microprobe analysis of silica in epidermal cells ofEquisetum. Amer. J. Bot. 58: 309–316.

    Article  CAS  Google Scholar 

  • —,Y. Takeoka, T. J. Carlson, W. C. Bigelow, J. D. Jones, P. H. Moore &N. S. Ghosheh. 1979 [1980]. Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology 29: 185–193.

    Google Scholar 

  • —,P. Dayanandan, Y. Takeoka, W. C. Bigelow, J. D. Jones &R. Iler. 1981. Silica in shoots of higher plants. Pp. 409–449in T. L. Simpson & B. E. Volcani (eds.), Silicon and siliceous structures in biological systems. Springer-Verlag, New York.

    Google Scholar 

  • —,—,C. I. Franklin &Y. Takeoka. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot. 55: 487–507.

    Google Scholar 

  • Kaul, R. B. 1972. Adaptive leaf architecture in emergent and floatingSparganium. Amer. J. Bot. 59: 270–278.

    Article  Google Scholar 

  • Kealhofer, L. &D. R. Piperno. 1998. Opal phytoliths in Southeast Asian flora. Smithsonian Contrib. Bot. 88: 1–39.

    Google Scholar 

  • Keating, R. C. 2003. Anatomy of the monocotyledons, IX. Acoraceae and Araceae. Clarendon Press, Oxford.

    Google Scholar 

  • Kerns, B. K. 2001. Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. SW Naturalist 46: 282–294.

    Article  Google Scholar 

  • —,M. M. Moore &S. C. Hart. 2001. Estimating forest-grassland dynamics using soil phytolith assemblages and delta C—13 of soil organic matter. Ecoscience 8: 478–488.

    Google Scholar 

  • Killmann, W. &L. T. Hong. 1992. Some observations on the stegmata of palm trees. Pp. 424–429in J. P. Rojo, J. U. Aday, E. R. Barile, R. K. Araral & W. M. America (eds.), Proc. 2nd Pacific Regional Wood Anatomy Conf. 1989. For. Prod. Dev. Inst., College, Laguna, Philippines.

    Google Scholar 

  • Kohl, F. G. 1889. Anatomisch-physiologische Untersuchungen der Kieselsaure und Kalksalze in der Pflanze. Marburg.

  • Kondo, R., C. Childs &I. Atkinson. 1994. Opal phytoliths of New Zealand. Manaaki Whenua Press, Lincoln, New Zealand.

    Google Scholar 

  • Konstanty, E. C. 1926. Ueber der Entstehung der Kristallzellreihen mit besonderer Berücksichtigung der Drogenpflanzen. Bot. Archiv 15: 131–186.

    Google Scholar 

  • Koyama, T. 1966. The systematic significance of leaf structure in the Cyperaceae-Mapanieae. Mem. New York Bot. Gard. 15: 136–159.

    Google Scholar 

  • —. 1967. The systematic significance of leaf structure in the tribe Sclerieae (Cyperaceae). Mem. New York Bot. Gard. 16: 46–70.

    Google Scholar 

  • Kress, W. J., L. M. Prince, W. J. Hahn &E. A. Zimmer. 2001. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst. Biol. 50: 926–944.

    Article  PubMed  CAS  Google Scholar 

  • Kubitzki, K. (ed.). 1998. The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.

    Google Scholar 

  • Kukkonen, I. 1967. Vegetative anatomy ofUncinia (Cyperaceae). Ann. Bot., n.s., 31: 523–544.

    Google Scholar 

  • Kurzweil, H., H. P. Linder, W. L. Stern &A. M. Pridgeon. 1995. Comparative vegetative anatomy and classification of Diseae (Orchidaceae). Bot. J. Linn. Soc. 117: 171–220.

    Google Scholar 

  • Küster, E. 1897. Über die anatomischen Charaktere der Chrysobalaneen, insbesondere ihre Kieselablagerungen. Bot. Zentralbl. 69:46–54, 97–106, 129–139, 161–169, 193–202, 225–234 (also diss., Cassel).

    Google Scholar 

  • Lalueza, C., J. Juan &R. M. Albert. 1996. Phytolith analysis on dental calculus, enamel surface and burial soil: Information about diet and paleoenvironment. Amer. J. Phys. Anthropol. 101: 101–113.

    Article  Google Scholar 

  • Lanning, F. C. 1960. Nature and distribution of silica in strawberry plants. Proc. Amer. Soc. Hort. Sci. 76: 349–358.

    Google Scholar 

  • — &L. N. Eleuterius. 1983. Silica and ash in tissues of some coastal plants. Ann. Bot. 51: 835–850.

    CAS  Google Scholar 

  • ——. 1985. Silica and ash in tissues of some plants growing in the coastal areas of Mississippi, U.S.A. Ann. Bot. 56: 157–172.

    CAS  Google Scholar 

  • ——. 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Ann. Bot. 64: 395–410.

    CAS  Google Scholar 

  • —,T. L. Hopkins &J. C. Loera. 1980. Silica and ash content and depositional patterns in tissues of matureZea mays L. plants. Ann. Bot. 45: 549–554.

    CAS  Google Scholar 

  • Larcher, W., U. Meindl, E. Raiser &M. Ishikawa. 1991. Persistent supercooling and silica deposition in cell walls of palm leaves. J. Pl. Physiol. 139: 146–154.

    CAS  Google Scholar 

  • Laroche, J. 1968. Contribution à l’étude de l’Equisetumarvense L, III: Recherches sur la nature et la localisation de la silice chez le sporophyte. Rev. Gén. Bot. 75: 65–116.

    Google Scholar 

  • Lawton, J. R. 1980. Observations on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem internode ofLolium temulenium L. (Gramineae). Bot. J. Linn. Soc. 80: 161–177.

    Article  Google Scholar 

  • Le Cohu, M. C. 1973. Examen au microscope électronique à balayage, des cônes de silice chez les Cyperacées. Compt. Rend. Hebd. Acad. Sci., Paris, D, 277: 1301–1303.

    Google Scholar 

  • Le Coq, C., C. Guervin, J. Laroche &D. Robert. 1991. Modalités d’excrétion de la silice chez deux Ptéridophytes. Bull. Soc. Bot. Fr., 138: Act. Bot. (2), 231–234.

    Google Scholar 

  • Lewin, J. &B. E. F. Reismann. 1969. Silica and plant growth. Ann. Rev. Pl. Physiol. 20: 289–304.

    Article  CAS  Google Scholar 

  • Lim, L. L. &B. C. Stone. 1971. Notes on systematic foliar anatomy of the genusFreycinetia (Pandanaceae). J. Jap. Bot. 46: 207–220.

    Google Scholar 

  • Linder, H. P. 1984. A phylogenetic classification of the African Restionaceae. Bothalia 15: 11–76.

    Google Scholar 

  • —. 2000. Vicariance, climate change, anatomy and phylogeny of Restionaceae. Bot. J. Linn. Soc. 134: 159–177.

    Article  Google Scholar 

  • —,B. G. Briggs &L. A. S. Johnson. 1998. Restionaceae. Pp. 425–445in K. Kubitzki (ed.), The families and genera of vascular plants, IV. Flowering plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer-Verlag, Berlin.

    Google Scholar 

  • Linsbauer, K. 1911. Zur physiologischen Anatomie der Epidermis und des Durchluftungsapparates der Bromeliaceen. Sitzungsber. Akad. Wiss. Wien 120: 319–348.

    Google Scholar 

  • Lopez, P. &O. Matthei. 1995. Micromorfologia del aquenio en especies del géneroCyperus L. (Cyperaceae), Chile. Gayana, Bot. 52: 67–75 (Spanish; English summary).

    Google Scholar 

  • Lovering, T. S. 1959. Significance of accumulator plants in rock weathering. Bull. Geol. Soc. Amer. 70: 781–800.

    Article  CAS  Google Scholar 

  • Lowary, P. A. &C. J. Avers. 1965. Nucleolar variation during differentiation ofPhleum root epidermis. Amer. J. Bot. 52: 199–203.

    Article  Google Scholar 

  • Luceño, M. 1992. Estudios en la seccion Spirostachyae (Drejer) Bailey del generoCarex, I: Revalorizacion deC. helodes Link. Anal. Jard. Bot. Madrid 50: 73–81.

    Google Scholar 

  • Lurwick, L. E. &A. Johnston. 1969. Cumulic soils of the rough fescue prairie popular transition region. Canad. J. Soil Sci. 49: 199–203.

    Google Scholar 

  • Madella, M. 1997. Phytoliths from a Central Asia loess-paleosol sequence and modern soils: Their taphronomical and palaeoecological implications. Pp. 49–57in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Mann, S., S. B. Parker, C. C. Perry, M. D. Ross, A. J. Skarnulis & R. J. P. Williams. 1983a. Problems in the understanding of biominerals. Pp. 171–183in P. Westbroek & E. W. de Jong (eds.), Biomineralisation and biological metal accumulation. D. Reidel Publishing Company.

  • -,C. C. Perry, R. J. P. Williams, C. A. Fyfe, G C. Gobbi & G J. Kennedy. 1983b. The characterisation of the nature of silica in biological systems. J. Chem. Soc. Chem. Commun. 168–170.

  • Marumo, Y. &H. Yanai. 1986. Morphological analysis of opal phytoliths for soil discrimination in forensic science investigation. J. Forensic Sci. 31: 1039–1049.

    Google Scholar 

  • Matsuda, T., H. Kawahara &N. Chonan. 1983. Histological studies on breaking resistance of lower internodes in rice culm, II: Ultrastructural and histochemical observations on the secondary wall formation. Jap. J. Crop Sci. 52: 84–93 (Japanese; English summary).

    Google Scholar 

  • Mbida Mindzie, C., H. Doutrelepont, L. Vrydaghs, R. L. Swennen, R. J. Swennen, H. Beeckman, E. de Langhe &P. de Maret. 2001. First archaeological evidence of banana cultivation in central Africa during the third millennium before present. Veget. Hist. Archaeobot. 10: 1–6.

    Article  Google Scholar 

  • McKeague, J. A. &M. G. Cline. 1963. Silica in soil solutions, II: The absorption of monosilicic acid by soil and by other substances. Canad. J. Soil Sci. 43: 83–96.

    CAS  Google Scholar 

  • McNaughton, S. J. &J. L. Tarrants. 1983. Grass leaf silicification: Natural selection for an inducible defense against herbivores. Proc. Natl. Acad. U.S.A. 80: 790–791.

    Article  CAS  Google Scholar 

  • —,—,M. M. McNaughton &R. H. Davis. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66: 528–535.

    Article  CAS  Google Scholar 

  • Mehra, P. N. &O. P. Sharma. 1963. Anatomy ofEleocharis plantaginea R. Br. Res. Bull. Panjab Univ., n.s., 14: 289–305.

    Google Scholar 

  • ——. 1965. Epidermal silica cells in the Cyperaceae. Bot. Gaz. 126: 53–58.

    Article  Google Scholar 

  • Menapace, F. J. 1991. A preliminary micromorphological analysis ofEleocharis (Cyperaceae) achenes for systematic potential. Canad. J. Bot. 69: 1533–1541.

    Article  Google Scholar 

  • — &D. E. Wujek. 1987. The systematic significance of achene micromorphology inCarex retrorsa (Cyperaceae). Brittonia 39: 278–283.

    Article  Google Scholar 

  • Metcalfe, C. R. 1960. Anatomy of the monocotyledons. I. Gramineae. Clarendon Press, Oxford.

    Google Scholar 

  • —. 1971. Anatomy of the monocotyledons. V. Cyperaceae. Clarendon Press, Oxford.

    Google Scholar 

  • — &L. Chalk. 1983. Anatomy of the dicotyledons. II. Wood structure and conclusion of the general introduction. Ed. 2. Clarendon Press, Oxford.

    Google Scholar 

  • Mettenius, G H. 1864. Über die Hymenophyllaceae. Abhandl. Kon. Sächs. Ges. Wiss., Math-Phys. Cl., 7: 403–504.

    Google Scholar 

  • Meyer, F. J. 1933. Beiträge zur vergleichenden Anatomie der Typhaceen (GattungTypha). Beih. Bot. Zentralbl. 51(1): 335–376.

    Google Scholar 

  • Michelangeli, F. A., J. I. Davis &D. W. Stevenson. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Amer. J. Bot. 90: 93–106.

    Article  CAS  Google Scholar 

  • Miller, A. 1980. Phytoliths as indicators of farming techniques. Paper presented at the 45th annual meeting of the Society for American Archaeology, Philadelphia.

  • Möbius, M. 1908a. Über die Festlegung der Kalksalze und Kieselkörper in der Pflanzenzellen. Ber. Deutsch. Bot. Ges. 26A: 29–37.

    Google Scholar 

  • —. 1908b. Uber ein eigentumliches Vorkommen von Kieselkörpern in der Epidermis und der Bau des Blattes vonCallisia repens. Wiesner Festschrift, Vienna.

    Google Scholar 

  • Molisch, H. 1913. Mikrochemie der Pflanze. G. Fischer, Jena, Germany (Ed. 3, 1923).

    Google Scholar 

  • —. 1918. Beiträge zur Mikrochemie der Pflanze, 12 und 13, 12: Über Riesenkieselkörper im Blatte vonArundo donax. Ber. Deutsch. Bot. Ges. 36: 474–481.

    CAS  Google Scholar 

  • —. 1920. Aschenbild und Pflanzenverwandtschaft. Sitzungsber. Akad. Wiss. Wien, Math-Nat. Kl. I, 129: 261–294.

    CAS  Google Scholar 

  • Møller, J. D. &H. Rasmussen. 1984. Stegmata in Orchidales: Character state distribution and polarity. Bot. J. Linn. Soc. 89: 53–76.

    Article  Google Scholar 

  • Molvray, M., P. J. Kores &M. W. Chase. 2000. Polyphyly of mycoheterotrophic orchids and functional influences on floral and molecular characters. Pp. 441–448in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Montgomery, D. J. &D. W. Parry. 1979. The ultrastructure and analytical microscopy of silicon deposition in the intercellular spaces of the roots ofMolinia caerulea (L.) Moench. Ann. Bot. 44: 79–84.

    Google Scholar 

  • Moore, D. 1984. The role of silica in protecting Italian ryegrass (Lolium multiflorum) from attack by dipterous stem-boring larvae (Oscinella frit and other related species). Ann. Appl. Biol. 104: 161–166.

    Article  Google Scholar 

  • Morcote-Rios, G. &R. Bernai. 2001. Remains of palms (Palmae) at archaeological sites in the New World: A review. Bot. Rev. 67: 309–350.

    Article  Google Scholar 

  • Morris, M. W., W. L. Stern &W. S. Judd. 1996. Vegetative anatomy and systematics of subtribe Dendrobiinae (Orchidaceae). Bot. J. Linn. Soc. 120: 89–144.

    Google Scholar 

  • Muasya, A. M., D. A. Simpson, M. W. Chase &A. Culham. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl. Syst. Evol. 211: 257–271.

    Article  CAS  Google Scholar 

  • —,J. J. Bruhl, D. A. Simpson, A. Culham &M. W. Chase. 2000. Suprageneric phylogeny of Cyperaceae: A combined analysis. Pp. 593–601in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Mulholland, S. C. 1989. Phytolith shape frequencies in North Dakota, U.S.A., grasses: A comparison to general patterns. J. Archaeol. Sci. 16: 489–512.

    Article  Google Scholar 

  • Munro, S. L. &H. P. Linder. 1998. The phylogenetic position ofPrionium (Juncaceae) within the order Juncales based on morphological and rbcL sequence data. Syst. Bot. 23: 43–55.

    Article  Google Scholar 

  • Nanda, H. P. &S. Gangopadhyay. 1984. Role of silicated cells in rice leaf on brown spot disease incidence byBipolaris oryzae. Int. J. Trop. Pl. Dis. 2(2): 89–98.

    Google Scholar 

  • Netolitzky, F. 1929. Die Kieselkörper. Die Kalksalze als Zellinhaltskörperc by F. Netolitzky. Calciumoxalatmonohydrat und trihydrat by A. Frey. Vol. III/la of Handbuch der Pflanzenanatomie. Berlin.

  • Newman, R. H. &A. L. Mackay. 1983. Silica spicules in canary grass. Ann. Bot. 52: 927–929.

    CAS  Google Scholar 

  • Norris, F. M. G. 1983. Anatomy of the genusKyllinga in South Africa. Bothalia 14: 809–817.

    Google Scholar 

  • Norton, B. E. 1967. Occurrence of silica inLepidosperma limicola Wakefield. Austral. J. Sci. 29: 371–372.

    Google Scholar 

  • Oh, Y. C. &E. J. Ham. 1998. A taxonomic study onScirpus Linné (Cyperaceae) of Korea. Korean J. Pl. Taxon. 28: 217–247.

    Google Scholar 

  • — &H. J. Lee. 2001. A taxonomic study on section Acutae ofCarex L. in Korea (Cyperaceae). Korean J. Pl. Taxon. 31: 183–222 (Korean; English summary).

    Google Scholar 

  • —,C. S. Lee &K. J. Ryu. 2001. A taxonomic study on section Atratae ofCarex L. in Korea (Cyperaceae). Korean J. Pl. Taxon. 31: 223–251 (Korean; English summary).

    Google Scholar 

  • Okuda, A. &E. Takahashi. 1961. The effect of various amounts of silicon supply on the growth of the rice plant and nutrient uptake, part 3. J. Sci. Soil Manure, Japan 32: 533–537.

    CAS  Google Scholar 

  • ——. 1964. The role of silicon. Pp. 123–146in The mineral nutrition of the rice plant: Proceedings of the symposium of the International Rice Research Institute. John Hopkins Press, Baltimore, MD.

    Google Scholar 

  • Ollendorf, A. L. 1992. Toward a classification scheme of sedge (Cyperaceae) phytoliths. Pp. 91–111in G Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.

    Google Scholar 

  • —,S. C. Mulholland &G. Rapp. 1987. Phytoliths from some Israeli sedges. Israel J. Bot. 36: 125–132.

    Google Scholar 

  • —,——. 1988. Phytolith analysis as a means of plant identification:Arundo donax andPhragmites communis. Ann. Bot. 61: 209–214.

    Google Scholar 

  • O’Neill, C., Q. Q. Pan, G. Clarke, F. S. Liu, G. Hodges, M. Ge, P. Jordan, Y. M. Chang, R. Newman &E. Toulson. 1982. Silica fragments from millet bran in mucosa surrounding oesophageal tumours in patients in northern China. Lancet 82–83: 1202–1206.

    Article  Google Scholar 

  • —,P. Jordan, T. Bhatt &R. Newman. 1986. Silica and oesophageal cancer. CIBA Foundation Symposia 121: 214–230.

    PubMed  CAS  Google Scholar 

  • Palmer, P. G. &S. Gerbeth Jones. 1986. A scanning electron microscope survey of the epidermis of East African grasses, IV. Smithsonian Contrib. Bot. 62: 1–120.

    Google Scholar 

  • ——. 1988. A scanning electron microscope survey of the epidermis of East African grasses, V, and West African supplement. Smithsonian Contrib. Bot. 67: 1–157.

    Google Scholar 

  • — &A. E. Tucker. 1981. A scanning electron microscope survey of the epidermis of East African grasses, I. Smithsonian Contrib. Bot. 49: 1–84.

    Google Scholar 

  • ——. 1983. A scanning electron microscope survey of the epidermis of East African grasses, II. Smithsonian Contrib. Bot. 53: 1–72.

    Google Scholar 

  • —,S. Gerbeth Jones &S. Hutchison. 1985. A scanning electron microscope survey of the epidermis of East African grasses, III. Smithsonian Contrib. Bot. 55: 1–136.

    Google Scholar 

  • Parr, J. F., V. Dolic, G. Lancaster &W. E. Boyd. 2001. A microwave digestion method for the extraction of phytoliths from herbarium species. Rev. Palaeobot. Palynol. 116: 203–212.

    Article  Google Scholar 

  • Parry, D. W. &M. J. Hodson. 1982. Silica distribution in the caryopsis and inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible significance in carcinogenesis. Ann. Bot. 49: 531–540.

    CAS  Google Scholar 

  • — &F. Smithson. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot., n.s., 22: 543–549.

    Google Scholar 

  • — &A. Winslow. 1977. Electron-probe microanalysis of silicon accumulation in the leaves and tendrils ofPisum sativum (L.) following root severance. Ann. Bot. 41: 275–278.

    Google Scholar 

  • —,M. J. Hodson &A. G. Sangster. 1984. Some recent advances in studies of silicon in higher plants. Phil. Trans. Roy. Soc. London, B, 304: 537–549.

    Article  CAS  Google Scholar 

  • —,C. O’Neill &M. J. Hodson. 1986. Opaline silica deposits in the leaves ofBidens pilosa L. and their possible significance in cancer. Ann. Bot. 58: 641–647.

    Google Scholar 

  • Pearsall, D. M. 1989. Paleoethnobotany. A handbook of procedures. Academic Press, San Diego.

    Google Scholar 

  • — &D. R. Piperno. 1990. Antiquity of maize cultivation in Ecuador: Summary and reevaluation of the evidence. Amer. Antiq. 55: 324–337.

    Article  Google Scholar 

  • —,—,E. H. Dinan, M. Umlauf, Z. Zhao &R. A. Benfer. 1995. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phytolith analysis: Results of preliminary research. Econ. Bot. 49: 183–196.

    Google Scholar 

  • Peisl, P. 1957. Die Binsenform. Ber. Schweiz. Bot. Ges. 67: 99–213.

    Google Scholar 

  • Perry, C. C., S. Mann &R. J. P. Williams. 1984a. Structural and analytical studies of the silicified macrohairs from the lemma of the grassPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 427–438.

    CAS  Google Scholar 

  • —,—,—,F. Watt, G. W. Grime &J. Takacs. 1984b. A scanning proton microprobe study of macrohairs from the lemma of the grassPhalaris canariensis L. Proc. Roy. Soc. London, B, 222: 439–445.

    CAS  Google Scholar 

  • Petersen, O. G. 1893. Bidrag til Scitamineernes anatomi. K. Danske Vidensk. Selsk.Skr. (6)8: 337–418.

    Google Scholar 

  • Pfeiffer, H. 1920a. Zur Systematik der GattungChrysithrix L. und anderer Chrysithrichinae. Ber. Deutsch. Bot. Ges. 38: 6–10.

    Google Scholar 

  • -. 1920b. Revision der GattungFicinia Schrad. Bremen.

  • —. 1921a. Beiträge zur Morphologie und Systematik der GattungenLagenocarpus undCryptangium I. Ber. Deutsch. Bot. Ges. 39: 125–134.

    Google Scholar 

  • —. 1921b. Der heutige Stand unsere Kenntnisse von den Kegelzellen der Cyperaceen. Ber. Deutsch. Bot. Ges. 39: 353–364.

    Google Scholar 

  • —. 1921c. Die Kegelzellen innerhalb der Gefässbündelscheide beiCladium mariscus R. Br. Beih. Bot. Zentralbl. 38(1): 401–404.

    Google Scholar 

  • —. 1922. Vergleichende Anatomie der Blätter der Lagenocarpus-Arten. Beih. Bot. Zentralbl. 39(2): 436–445.

    Google Scholar 

  • —. 1925. Aus der Entwicklungsgeschichte der Kegelzellen der Cyperaceen. Ber. Deutsch. Bot. Ges. 43: [26]-[32].

    Google Scholar 

  • —. 1927. Untersuchungen zur vergleichenden Anatomie der Cyperaceen, I: Die Anatomie der Blätter. Beih. Bot. Zentralbl. 44(1): 90–176.

    Google Scholar 

  • Pfister, R. 1892. Beitrag zur vergleichenden Anatomie der Sabaleen-Blätter. Diss., Zurich.

  • Pfitzer, E. 1877. Beobachtungen über Bau und Entwicklung epiphytischer Orchideen, III: Über das Vorkommen von Kieselscheiben bei den Orchideen. Flora 60: 245–248.

    Google Scholar 

  • Pinilla, A., J. Juan-Tresserras &M. J. Machado (eds.). 1997. Estado actual de los estudios de fitolitos en suelos y plantas. Monografías del Centro de Ciencias Medioambientales, 4 Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Piperno, D. R. 1985. Phytolith analysis and tropical paleo-ecology: Production and taxonomic significance of siliceous forms in New World plant domesticates and wild species. Rev. Palaeobot. Palynol. 45: 185–228.

    Article  Google Scholar 

  • —. 1988. Phytolith analysis: An archaeological and geological perspective. Academic Press, San Diego.

    Google Scholar 

  • —. 1989. The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Rev. Palaeobot. Palynol. 61: 147–173.

    Article  Google Scholar 

  • — &K. V. Flannery. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc. Natl. Acad. U.S.A. 98: 2101–2103.

    Article  CAS  Google Scholar 

  • — &D. M. Pearsall. 1993. Phytoliths in the reproductive structures of maize and teosinte: Implications for the study of maize evolution. J. Archaeol. Sci. 20: 337–362.

    Article  Google Scholar 

  • ——. 1998. The silica bodies of tropical American grasses: Morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contrib. Bot. 85: 1–40.

    Google Scholar 

  • Prat, H. 1931. L’Épiderme des Graminées: Étude anatomique et systématique. Thesis, Paris.

  • Pridgeon, A. M. 1994. Systematic leaf anatomy of Caladeniinae (Orchidaceae). Bot. J. Linn. Soc. 114: 31–48.

    Google Scholar 

  • — &W. L. Stern. 1982. Vegetative anatomy ofMyoxanthus (Orchidaceae). Selbyana 7: 55–63.

    Google Scholar 

  • —,P. J. Cribb, M. W. Chase &F. N. Rasmussen. 2001. Genera Orchidacearum. 2. Orchidoideae (part 1). Oxford Univ. Press, Oxford.

    Google Scholar 

  • Prychid, C. J. &P. J. Rudall. 1999. Calcium oxalate crystals in Monocotyledons: A review of their structure and systematics. Ann. Bot. 84: 725–739.

    Article  CAS  Google Scholar 

  • ——. 2000. Distribution of calcium oxalate crystals in monocotyledons. Pp. 159–162in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • —,C. A. Furness &P. J. Rudall. 2003. Systematic significance of cell inclusions in Haemodoraceae and allied families: Silica bodies and tapetal raphides. Ann. Bot. 92: 571–580.

    Article  PubMed  Google Scholar 

  • Puech, P.-F., C. Serratrice &F. F. Leek. 1983. Tooth wear as observed in ancient Egyptian skulls. J. Human Evol. 12: 617–629.

    Article  Google Scholar 

  • Quekett, J. 1852. Lectures on histology. Baillière, London.

    Google Scholar 

  • Ragonese, A. M., E. R. Guaglianone &C. Dizeo de Strittmatter. 1984. Desarrollo del pericarpio con cuerpos de silice de dos especies deRhynchospora Vahl (Cyperaceae). Darwiniana 25: 27–41 (English summary).

    Google Scholar 

  • Rapp, G. &S. C. Mulholland (eds.). 1992. Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.

    Google Scholar 

  • Rasmussen, H. 1986. An aspect of orchid anatomy and adaptationism. Lindleyana 1: 102–107.

    Google Scholar 

  • Raven, J. A. 1983. The transport and function of silicon in plants. Biol. Rev. 58: 179–207.

    Article  CAS  Google Scholar 

  • Rikli, M. 1895. Beiträge zur vergleichenden Anatomie der Cyperaceen mit besonderer Berücksichtigung der inneren Parenchymscheide. Jahrb. Wiss. Bot. 27: 485–580.

    Google Scholar 

  • Riquier, G. 1960. Les phytoliths de certains sols tropicaux et des podzals. Trans. Int. Congr. Soil Sci. 4: 425–431.

    Google Scholar 

  • Rolleri, C., A. M. Deferrari &M. de las M. Ciciarelli. 1987. Epidermis y estomatogenesis en Marattiaceae (Marattiales-Eusporangiopsida). Revista Mus. La Plata, n.s., 14, Bot. 94: 129–147.

    Google Scholar 

  • Rosanoff, S. 1871. Über Kieselsäureablagerungen in einigen Pflanzen. Bot. Ztg. 29: 749–753, 765–769.

    Google Scholar 

  • Rosen, A. M. 1992. Preliminary identification of silica skeletons from Near Eastern archaeological sites: An anatomical approach. Pp. 129–147in G. Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.

    Google Scholar 

  • Rothbuhr, L. &F. Scott. 1957. A study of the uptake of silicon and phosphorus by wheat plants, with radiochemical methods. Biochem. J. 65: 241–245.

    PubMed  CAS  Google Scholar 

  • Rovner, I. (ed.). 1986. Plant opal phytolith analysis in archaeology and paleoecology: Proceedings of the 1984 Phytolith Research Workshop, North Carolina State University, Raleigh, North Carolina. Occasional Paper of the Phytolitharien, 1. North Carolina State Univ., Raleigh.

    Google Scholar 

  • — &J. C. Russ. 1992. Darwin and design in phytolith systematics: Morphometric methods for mitigating redundancy. Pp. 253–276in G. Rapp & S. C. Mulholland (eds.), Phytolith systematics: Emerging issues. Advances in Archaeological and Museum Science, 1. Plenum Press, New York & London.

    Google Scholar 

  • Rudall, P. J. 1994. Anatomy and systematics of Iridaceae. Bot. J. Linn. Soc. 114: 1–21.

    Google Scholar 

  • —. 2000. ‘Cryptic’ characters in monocotyledons: Homology and coding: Revisiting old characters in the light of new data and new phytogenies. Pp. 114–123in R. Scotland & T. Pennington (eds.), Homology and Systematics. Taylor & Francis, London & New York.

    Google Scholar 

  • — &L. R. Caddick. 1994. Investigation of the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann. Bot. 74: 483–491.

    Article  CAS  Google Scholar 

  • — &M. W. Chase. 1996. Systematics of Xanthorrhoeaceaesensu lato: Evidence for polyphyly. Telopea 6: 629–647.

    Google Scholar 

  • —,C. A. Furness, M. W. Chase &M. F. Fay. 1997. Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canad. J. Bot. 75: 408–430.

    Google Scholar 

  • —,D. W. Stevenson &H. P. Linder. 1999. Structure and systematics ofHanguana, a monocotyledon of uncertain affinity. Austral. Syst. Bot. 12: 311–330.

    Article  Google Scholar 

  • Runge, F. &J. Runge. 1997. Opal phytoliths in East African plants and soils. Pp. 71–81in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Científicas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Russ, J. C. &I. Rovner. 1989. Stereological identification of opal phytolith populations from wild and cultivatedZea. Amer. Antiq. 54: 784–792.

    Article  Google Scholar 

  • Sae-Oui, P., C. Rakdee &P. Thanmathorn. 2002. Use of rice husk ash as a filler in natural rubber vulcanizates: In comparison with other commercial fillers. J. Appl. Polymer Sci. 83: 2485–2493.

    Article  CAS  Google Scholar 

  • Sakai, W. S. &M. Thorn. 1979. Localization of silicon in specific cell wall layers of the stomatal apparatus of sugarcane by use of energy dispersive X-ray analysis. Ann. Bot. 44: 245–248.

    CAS  Google Scholar 

  • Sangster, A. G. 1968. Studies of opaline silica deposits in the leaf ofSieglingia decumbens L. ‘Bernh.’ using the scanning electron microscope. Ann. Bot. 32: 237–240.

    Google Scholar 

  • — &D. W. Parry. 1971. Silica deposition in the grass leaf in relation to transpiration and the effect of Dinitrophenal. Ann. Bot. 35: 667–677.

    CAS  Google Scholar 

  • ——. 1976. The ultrastructure and electron-probe microassay of silica deposits in the endodermis of the seminal roots ofSorghum bicolor (L.) Moench. Ann. Bot. 40: 447–459.

    CAS  Google Scholar 

  • —,M. J. Hodson &D. W. Parry. 1983. Silicon deposition and anatomical studies in the inflorescence bracts of fourPhalaris species with their possible relevance to carcinogenesis. New Phytol. 93: 105–122.

    Article  Google Scholar 

  • —,S. E. Williams &M. J. Hodson. 1997. Silica deposition in the needles of the Gymnosperms, 2: Scanning electron microscopy and x-ray microanalysis. Pp. 135–145in A. Pinilla, J. Juan-Tresserras & M. J. Machado (eds.), Estado actual de los estudios de fitolitos en suelos y plantas. Monografias del Centro de Ciencias Medioambientales, 4. Consejo Superior de Investigaciones Cientificas and Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Sato, Y. I., H. Fujiwara &T. Udatsu. 1990. Morphological differences in silica body derived from motor cell of indica and japonica in rice. Jap. J. Breed. 40: 495–504 (Japanese; English summary).

    CAS  Google Scholar 

  • Schilling, E. 1918. Eigentümliche Ausgestaltung der Gefässbündelscheide beiEleocharis plantaginea. Z. Bot. 10: 512–516.

    Google Scholar 

  • Schmitt, U., G. Weiner &W. Liese. 1995. The fine structure of the stegmata inCalamus axillaris during maturation. IAWA Jl 16: 61–68.

    Google Scholar 

  • Schuyler, A. E. 1971. Scanning electron microscopy of achene epidermis in species ofScirpus (Cyperaceae) and related genera. Proc. Acad. Nat. Sci. Philadelphia 123(2): 29–52.

    Google Scholar 

  • Schwarz, K. 1973. A bound form of silicon and glycosamino-glycans and polysaccharides matrix/connective tissue. Proc. Natl. Acad. U.S.A. 70: 1608–1612.

    Article  CAS  Google Scholar 

  • Seberg, O. 1988. Leaf anatomy ofOreobolus R.Br. andSchoenoides Seberg (Cyperaceae). Bot. Jahrb. Syst. 110: 187–214.

    Google Scholar 

  • Sharma, O. P. &R. Shiam. 1984. Epidermal structures of culm inCyperus with a discussion of silica bodies in Cyperaceae. Bangladesh J. Bot. 13(1): 16–24.

    Google Scholar 

  • Siever, R. 1967. The silica budget in the sedimentary cycle. Amer. Mineralogist 42: 821–841.

    Google Scholar 

  • Smithson, E. 1956 [1957]. The comparative anatomy of the Flagellariaceae. Kew Bull. 491–501.

  • Solereder, H. &F. J. Meyer. 1928–1933. Systematische Anatomie der Monokotyledonen. Borntraeger, Berlin (Heft 1, 155 pp., 1933. Heft 3, 175 pp., 1928. Heft 4, 176 pp., 1929. Heft 6, 242 pp., 1930)

    Google Scholar 

  • Solla, R. F. 1884. Sui cristàlli di sílice in série perifasciali nelle pàlme. Nòta preliminàre. Nuovo G. Bot. Ital. 16: 50–51.

    Google Scholar 

  • Sowers, A. E. &E. L. Thurston. 1979. Ultrastructural evidence for uptake of silicon-containing silicic acid analogs byUrtica pilulifera and incorporation into cell wall silica. Protoplasma 101: 11–22.

    Article  Google Scholar 

  • Standley, L. A. 1990. Anatomical aspects of the taxonomy of sedges (Carex, Cyperaceae). Canad. J. Bot. 68: 1449–1456.

    Google Scholar 

  • Stant, M. Y. 1973. Scanning electron microscopy of silica bodies and other epidermal features inGibasis (Tradescantia) leaf. Bot. J. Linn. Soc. 66: 233–244.

    Article  Google Scholar 

  • Starr, J. R. &B. A. Ford. 2001. The taxonomic and phylogenetic utility of vegetative anatomy and fruit epidermal silica bodies inCarex section Phyllostachys (Cyperaceae). Canad. J. Bot. 79: 362–379.

    Article  Google Scholar 

  • -,S. A. Harris & D. A. Simpson. 2003. The relevance of fruit epidermal silica body variation inUncinia Pers. (tribe Cariceae) to taxonomic and phylogenetic studies in the Cyperaceae. Abstracts, Monocots III.

  • Stebbins, G. L. 1956. Cytogenetics and evolution of the grass family. Amer. J. Bot. 43: 890–905.

    Article  Google Scholar 

  • Sterling, C. 1967. Crystalline silica in plants. Amer. J. Bot. 54: 840–844.

    Article  CAS  Google Scholar 

  • Stern, W. L. 1997a. Vegetative anatomy of subtribe Orchidinae (Orchidaceae). Bot. J. Linn. Soc. 124: 121–136.

    Article  Google Scholar 

  • —. 1997b. Vegetative anatomy of subtribe Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 125: 211–227.

    Google Scholar 

  • —. 1999. Comparative vegetative anatomy of two saprophytic orchids from tropical America:Wullschlaegelia andUleiorchis. Lindleyana 14: 136–146.

    Google Scholar 

  • — &W. S. Judd. 1999. Comparative vegetative anatomy and systematics ofVanilla (Orchidaceae). Bot. J. Linn. Soc. 131: 353–382.

    Google Scholar 

  • ——. 2000. Comparative anatomy and systematics of the orchid tribe Vanilleae excludingVanilla. Bot. J. Linn. Soc. 134: 179–202.

    Article  Google Scholar 

  • ——. 2001. Comparative anatomy and systematics of Catasetinae (Orchidaceae). Bot. J. Linn. Soc. 136: 153–178.

    Google Scholar 

  • ——. 2002. Systematic and comparative anatomy of Cymbidieae (Orchidaceae). Bot. J. Linn. Soc. 139: 1–27.

    Article  Google Scholar 

  • — &M. W. Morris. 1992. Vegetative anatomy ofStanhopea (Orchidaceae) with special reference to pseudobulb water-storage cells. Lindleyana 7: 34–53.

    Google Scholar 

  • — &W. M. Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linn. Soc. 129: 87–103.

    Article  Google Scholar 

  • —,V. I. Cheadle &J. Thorsch. 1993a. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Bot. J. Linn. Soc. 111: 411–455.

    Google Scholar 

  • —,M. W. Morris, W. S. Judd, A. M. Pridgeon &R. L. Dressier. 1993b. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.

    Google Scholar 

  • Stevenson, D. W., J. I. Davis, J. V. Freudenstein, C. R. Hardy, M. P. Simmonds &C. D. Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement ofAcorus and Hydatellaceae. Pp. 17–24in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. Vol. 1. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Stewart, D. R. M. 1965. The epidermal characters of grasses, with special reference to East African plains species. Bot. Jahrb. Syst. 84: 63–116, 117–174.

    Google Scholar 

  • Stromberg, C. A. E. 2002. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: Preliminary results concerning the evolution of hypsodonty. Palaeogeog. Palaeoclim. Palaeoecol. 177: 59–75.

    Article  Google Scholar 

  • Struve, G. A. 1835. De silicia in plantis nonnullis. Diss., Berolini.

  • Suwanprateeb, J. &K. Hatthapanit. 2002. Rice-husk-ash-based silica as a filler for embedding composites in electronic devices. J. Appl. Polymer Sci. 86: 3013–3020.

    Article  CAS  Google Scholar 

  • Suzuki, H. 1937. Studies on the relation between the anatomical characters of the rice plant and its susceptibility to blast disease. J. Coll. Agric. Tokyo Univ. 14: 181–264.

    Google Scholar 

  • Takahashi, E. &Y. Miyake. 1977. Silicon and plant growth: Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture.

  • Takeoka, Y., P. B. Kaufman &O. Matsumura. 1979 [1980]. Comparative microscopy of idioblasts in lemma epidermis of some C3 and C4 grasses (Poaceae) using SUMP method. Phytomorphology 29: 330–337.

    Google Scholar 

  • Tallent, R. C. &D. E. Wujek. 1983. Scanning electron microscopy an aid to taxonomy of sedges (Cyperaceae:Carex). Micron Microsc. Acta 14: 271–272.

    Article  Google Scholar 

  • Tillich, H.-J. &E. Sill. 1999. Morphologische und anatomische Studien anHanguana Blume (Hanguanaceae) undFlagellaria L. (Flagellariaceae), mit der Beschreibung einer neuen Art,Hanguana bogneri spec. nov. Sendtnera 6: 215–238 (English summary).

    Google Scholar 

  • Toivonen, H. &T. Timonen. 1976. Perigynium and achene epidermis in some species ofCarex, subg.Vignea (Cyperaceae), studied by scanning electron microscopy. Ann. Bot. Fenn. 13: 49–59.

    Google Scholar 

  • Tomlinson, P. B. 1956. Studies in the systematic anatomy of the Zingiberaceae. J. Linn. Soc., Bot. 55: 547–592.

    Article  Google Scholar 

  • —. 1959. An anatomical approach to the classification of the Musaceae. J. Linn. Soc., Bot. 55: 779–809.

    Article  Google Scholar 

  • —. 1960. The anatomy ofPhenakospermum (Musaceae). J. Arnold Arbor. 41: 287–297.

    Google Scholar 

  • —. 1961a. The anatomy ofCanna. J. Linn. Soc., Bot. 56: 467–473.

    Article  Google Scholar 

  • —. 1961b. Anatomy of the monocotyledons. II. Palmae. Clarendon Press, Oxford.

    Google Scholar 

  • —. 1961c. Morphological and anatomical characteristics of the Marantaceae. J. Linn. Soc., Bot. 58: 55–78.

    Article  Google Scholar 

  • —. 1962. Phylogeny of the Scitamineae—Morphological and anatomical considerations. Evolution 16: 192–213.

    Article  Google Scholar 

  • —. 1965. Notes on the anatomy ofAphyllanthes (Liliaceae) and comparison with Eriocaulaceae. J. Linn. Soc., Bot. 59: 163–173.

    Article  Google Scholar 

  • —. 1966. Anatomical data in the classification of Commelinaceae. J. Linn. Soc. 59: 371–395.

    Article  Google Scholar 

  • —. 1969. Anatomy of the Monocotyledons. III. Commelinales—Zingiberales. Clarendon Press, Oxford.

    Google Scholar 

  • —. 1974. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23: 109–128.

    Article  Google Scholar 

  • Toscano de Brito, A. L. V. 1998. Leaf anatomy of Ornithocephalinae (Orchidaceae) and related subtribes. Lindleyana 13: 234–258.

    Google Scholar 

  • Tucker, G. C. &N. G. Miller. 1990. Achene microstructure inEriophorum (Cyperaceae): Taxonomic implications and paleobotanical applications. Bull. Torrey Bot. Club 117: 266–283.

    Article  Google Scholar 

  • Twiss, P. C., E. Suess &R. M. Smith. 1969. Morphological classification of grass phytoliths. Proc. Soil Sci. Soc Amer. 33: 109–115.

    Google Scholar 

  • Udatsu, T. &H. Fujiwara. 1993. Application of the discriminant function to subspecies of rice (Oryza sativa) using the shape of motor cell silica body. Ethnobotany 5: 107–116.

    Google Scholar 

  • Uhl, N. W. &J. Dransfield. 1987. Genera palmarum: A classification of palms based on the work of Harold E. Moore, Jr. The L. H. Bailey Hortorium and the International Palm Society. Allen Press, Lawrence, KS.

    Google Scholar 

  • Umemoto, K. &K. Hozumi. 1971a. Applications of low-temperature ashing with high-frequency oxygen plasma in pharmacognostical studies: Observations of silicon bodies in ashed tissues of leaves ofBambusa multiplex Raeuschel and stems ofEquisetum hyemale L. andEquisetum ramosissimum Desf. var.japonicum Milde. Yakugaku Zasshi 91: 850–854 (Japanese; English summary). [Biol. Abstr. 853 (1972) No. 44793]

    PubMed  CAS  Google Scholar 

  • ——. 1971b. Applications of low-temperature ashing with high-frequency oxygen plasma in pharmacognostical studies: Method for observation of mineral microstructures. Yakugaku Zasshi 91: 890–895 (Japanese; English summary). [Biol. Abstr. 853 (1972) No. 44797]

    PubMed  CAS  Google Scholar 

  • -,M. Hutoh & K. Hozumi. 1973. Identification of the plant source of the Chinese crude drug “Dan-zhu-ye” using the low-temperature plasma ashing technique. Mikrochim. Acta (2): 301–313.

  • Van Soest, P. J. &L. H. P. Jones. 1968. Effect of silica in forages upon digestibility. J. Dairy Sci. 51: 1644–1648.

    Article  Google Scholar 

  • Vicari, M. &D. R. Bazely. 1993. Do grasses fight back? The case for antiherbivore defences. Trends Ecol. Evol. 8(4): 137–141.

    Article  Google Scholar 

  • Von Mohl, H. 1861. Über das Kieselskelett lebender Pflanzenzellen. Bot. Ztg. 19: 209–215, 217–221, 225–231,305–308.

    Google Scholar 

  • Wadham, M. D. &D. W. Parry. 1981. The silicon content ofOryza sativa L. and its effect on the grazing behaviour ofAgriolimax reticulatus Muller. Ann. Bot. 48: 399–402.

    CAS  Google Scholar 

  • Walter, K. S. 1975. A preliminary study of the achene epidermis of certainCarex (Cyperaceae) using scanning electron microscopy. Michigan Bot. 14: 67–72.

    Google Scholar 

  • Wang, Y. & H. Lu. 1993. The study of phytolith and its application. China Ocean Press, n.p.

  • Waterway, M. J. 1990. Systematic implications of achene micromorphology inCarex section Hymenochlaenae (Cyperaceae). Canad. J. Bot. 68: 630–639.

    Article  Google Scholar 

  • Webb, M. A. &H. J. Arnott. 1982. A survey of calcium oxalate crystals and other mineral inclusions in seeds. Scan. Electron Microscop. 1982(3): 1109–1131.

    Google Scholar 

  • Weiner, G. 1992. Zur Stammanatomie der Rattanpalmen. Diss., Hamburg.

  • — &W. Liese. 1990. Rattans—Stern anatomy and taxonomic implications. IAWA Bull., n.s., 11:61–70.

    Google Scholar 

  • Welle, B. J. H. ter. 1976. Silica grains in woody plants of the Neotropics, especially Surinam. Pp. 107–142in P. Baas, A. J. Bolton & D. M. Catling (eds.), Wood structure in biological and technological research. Leiden Botanical Series, 3. Leiden Univ. Press, Leiden, Netherlands.

    Google Scholar 

  • Whang, S. S., K. Kim &W. M. Hess. 1998. Variation of silica bodies in leaf epidermal long cells within and among seventeen species ofOryza (Poaceae). Amer. J. Bot. 85: 461–466.

    Article  Google Scholar 

  • Wieler, A. 1893. Ueber das Vorkommen von Verstopfungen in den Gefässen mono- und dicoty 1er Pflanzen. Medeel. Proefstation Midden-Java 1–41.

  • —. 1897. Beiträge zur Anatomie des Stockes vonSaccharum. Beitr. Wiss. Bot. 2: 141.

    Google Scholar 

  • Wiesner, J. 1867. Einleitung in die technische Mikroskopie. Vienna.

  • Wilczek, E. 1892. Beiträge zur Kenntniss des Baues der Frucht und des Samens der Cyperaceen. Diss., Zurich (also Bot. Zentralbl. 51: 129–138, 193–201, 225–233, 257–265).

  • Wilding, L. P. & L.R. Drees. 1968. Biogenetic opal in soils as an index of vegetative history in the Prairie Peninsula. Pp. 99–103in R. E. Bergstrom (ed.), The Quaternary of Illinois: A symposium in observance of the centennial of the University of Illinois. Special Publ. No. 14. Univ. of Illinois, College of Agriculture, Urbana.

    Google Scholar 

  • ——. 1974. Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays and Clay Minerals 22: 295–306.

    Article  CAS  Google Scholar 

  • —,N. E. Smeck &L. R. Drees. 1977. Silica in soils: Quartz, cristobalite, tridymite and opal. Pp. 471–552in Minerals in soil environments. Soil Science Society of America, Madison.

    Google Scholar 

  • Wille, F. 1926. Beiträge zur Anatomie des Cyperaceenrhizoms. Beih. Bot. Zentralbl. 43(1): 267–309.

    Google Scholar 

  • Wujek, D. E. &F. J. Menapace. 1986. Taxonomy ofCarex Section Folliculatae using achene morphology. Rhodora 88: 399–403.

    Google Scholar 

  • Yoshida, S. 1965. Chemical aspects of the role of silicon in physiology of the rice plant. Bull. Natl. Inst. Agric. Sci., Japan, ser. B, 15: 1–58 (Japanese; English summary). [Biol. Abstr. 48 (1967) No. 66506]

    Google Scholar 

  • —,Y. Ohnishi &K. Kitagishi. 1959. Role of silicon in rice nutrition. Soil Sci. Pl. Nutr. 9: 49–53.

    Google Scholar 

  • —,A. F. Douglas, H. C. James &A. G. Kwanchai. 1976. Laboratory manual for physiological studies of rice. IRRI Press, Los Baños, Philippines.

    Google Scholar 

  • Yukawa, T. &W. L. Stern. 2002. Comparative vegetative anatomy and systematics ofCymbidium (Cymbidieae: Orchidaceae). Bot. J. Linn. Soc. 138: 383–419.

    Article  Google Scholar 

  • Zhao, Z., D. M. Pearsall, R. A. Benfer &D. R. Piperno. 1998. Distinguishing rice (Oryza saliva Poaceae) from wildOryza species through phytolith analysis, II: Finalized method. Econ. Bot. 52: 134–145.

    Google Scholar 

  • Zörnig, H. 1903. Beiträge zur Anatomie der Coelogyninen. Bot. Jahrb. Syst. 33: 618–741 (also diss., Heidelberg).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prychid, C.J., Rudall, P.J. & Gregory, M. Systematics and biology of silica bodies in monocotyledons. Bot. Rev 69, 377–440 (2003). https://doi.org/10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2

Keywords

Navigation