Skip to main content
Log in

A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In this study, we developed and tested a high-precision motion trajectory tracking controller of a pneumatic cylinder driven by four costless on/off solenoid valves rather than by a proportional directional control valve. The relationship between the pulse width modulation (PWM) of a signal’s duty cycle and control law was determined experimentally, and a mathematical model of the whole system established. Owing to unknown disturbances and unmodeled dynamics, there are considerable uncertain nonlinearities and parametric uncertainties in this pneumatic system. A modified direct adaptive robust controller (DARC) was constructed to cope with these issues. The controller employs a gradient type adaptation law based on discontinuous projection mapping to guarantee that estimated unknown model parameters stay within a known bounded region, and uses a deterministic robust control strategy to weaken the effects of unmodeled dynamics, disturbances, and parameter estimation errors. By using discontinuous projection mapping, the parameter adaptation law and the robust control law can be synthesized separately. A recursive backstepping technology is applied to account for unmatched model uncertainties. Kalman filters were designed separately to estimate the motion states and the derivative of the intermediate control law in synthesizing the deterministic robust control law. Experimental results illustrate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, K., Yokota, S., 2005. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics, 15(6):683–702. [doi:10.1016/j.mechatronics.2005.01.001]

    Article  Google Scholar 

  • Aziz, S., Bone, G.M., 1998. Automatic tuning of an accurate position controller for pneumatic actuators. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1782–1788. [doi:10.1109/IROS.1998.724855]

    Google Scholar 

  • Barth, E.J., Goldfarb, M., 2002. A control design method for switching systems with application to pneumatic servo systems. ASME Int. Mechanical Engineering Congress and Exposition, p.463–469. [doi:10.1115/IMECE2002-33424]

    Google Scholar 

  • Barth, E.J., Zhang, J., Goldfarb, M., 2002. Sliding mode approach to PWM-controlled pneumatic systems. Proc. American Control Conf., 3:2362–2367. [doi:10.1109/ACC.2002.1023995]

    Google Scholar 

  • Brun, X., Belgharbi, M., Sesmat, S., et al., 1999. Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 213(5):387–406. [doi:10.1243/0959651991540232]

    Google Scholar 

  • Carneiro, J.F., de Almeida, F.G., 2012. A high-accuracy trajectory following controller for pneumatic devices. Int. J. Adv. Manuf. Technol., 61(1–4):253–267. [doi:10.1007/s00170-011-3695-6]

    Article  Google Scholar 

  • Chen, H.M., Chen, Z.Y., Chung, M.C., 2009. Implementation of an integral sliding mode controller for a pneumatic cylinder position servo control system. 4th Int. Conf. on Innovative Computing, Information and Control, p.552–555. [doi:10.1109/ICICIC.2009.240]

    Google Scholar 

  • Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633–645. [doi:10.1109/TCST.2008.2002950]

    Article  Google Scholar 

  • Hodgson, S., Le, M.Q., Tavakoli, M., et al., 2012. Improved tracking and switching performance of an electropneumatic positioning system. Mechatronics, 22(1):1–12. [doi:10.1016/j.mechatronics.2011.10.007]

    Article  Google Scholar 

  • Lee, H.K., Choi, G.S., Choi, G.H., 2002. A study on tracking position control pneumatic actuators. Mechatronics, 12(6):813–831. [doi:10.1016/S0957-4158(01)00024-1]

    Article  Google Scholar 

  • Meng, D.Y., Tao, G.L., Ban, W., et al., 2013a. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness. J. Cent. South Univ., 20(6):1510–1518. [doi:10.1007/s11771-013-1642-4]

    Article  Google Scholar 

  • Meng, D.Y., Tao, G.L., Zhu, X.C., 2013b. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620–1633. [doi:10.1080/00207179.2013.792002]

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, T., Leavitt, J., Jabbari, F., 2007. Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron., 12(2):216–219. [doi:10.1109/TMECH.2007.892821]

    Article  Google Scholar 

  • Ning, S., Bone, G.M., 2005. Experimental comparison of two pneumatic servo position control algorithms. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.37–42. [doi:10.1109/ICMA.2005.1626519]

    Google Scholar 

  • Qian, P.F., Tao, G.L., Chen, J.F., 2012. Modeling and simulation of stick-slip motion for pneumatic cylinder based on meter-in circuit. Appl. Mech. Mater., 130-134:775–780. [doi:10.4028/www.scientific.net/AMM.130-134.775]

    Article  Google Scholar 

  • Qian, P.F., Tao, G.L., Meng, D.Y., et al., 2014. Nonlinear model-based position servo control of electro-pneumatic clutch actuator. Trans. Chin. Soc. Agric. Mach., 45(3):1–6 (in Chinese). [doi:10.6041/j.issn.1000-1298.2014.03.001]

    Google Scholar 

  • Rao, Z., Bone, G.M., 2008. Nonlinear modeling and control of servo pneumatic actuators. IEEE Trans. Contr. Syst. Technol., 16(3):562–569. [doi:10.1109/TCST.2007.912127]

    Article  Google Scholar 

  • Richard, E., Scavarda, S., 1996. Comparison between linear and nonlinear control of an electropneumatic servodrive. J. Dynam. Syst. Meas. Contr., 118(2):245–252. [doi:10.1115/1.2802310]

    Article  MATH  Google Scholar 

  • Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330–334. [doi:10.1109/87.911384]

    Article  Google Scholar 

  • Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639–650. [doi:10.1016/S0967-0661(03)00148-5]

    Article  Google Scholar 

  • Shen, X., Zhang, J., Barth, E.J., et al., 2006. Nonlinear model-based control of pulse width modulated pneumatic positioning system. J. Dynam. Syst. Meas. Contr., 128(3): 663–669. [doi:10.1115/1.2232689]

    Article  Google Scholar 

  • Situm, Z., Pavkovic, D., Novakovic, B., 2004. Servo pneumatic position control using fuzzy PID gain scheduling. J. Dynam. Syst. Meas. Contr., 126(2):376–387. [doi:10.1115/1.1767857]

    Article  Google Scholar 

  • Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923–933. [doi:10.1016/j.conengprac.2005.05.003]

    Article  Google Scholar 

  • Tsai, Y.C., Huang, A.C., 2008. Multiple-surface sliding controller design for pneumatic servo systems. Mechatronics, 18(9):506–512. [doi:10.1016/j.mechatronics.2008.03.006]

    Article  Google Scholar 

  • van Varseveld, R.B., Bone, G.M., 1997. Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans. Mechatron., 2(3):195–204. [doi:10.1109/3516.622972]

    Article  Google Scholar 

  • Wang, J., Wang, D.J.D., Moore, P.R., et al., 2001. Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems. IEE Proc.-Contr. Theory Appl., 148(1):35–42. [doi:10.1049/ip-cta:20010238]

    Article  Google Scholar 

  • Welch, G., Bishop, G., 2001. An introduction to the Kalman filter. SIGGRAPH, Course 8.

    Google Scholar 

  • Xiang, F., Wikander, J., 2004. Block-oriented approximate feedback linearization for control of pneumatic actuator systems. Contr. Eng. Pract., 12(4):387–399. [doi:10.1016/S0967-0661(03)00104-7]

    Article  Google Scholar 

  • Xu, L., Yao, B., 2001. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Trans. Mechatron., 6(4):444–452. [doi:10.1109/3516.974858]

    Article  Google Scholar 

  • Yao, B., 2003. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. Proc. American Control Conf., p.3020–3025. [doi:10.1109/ACC.2003.1243991]

    Google Scholar 

  • Yao, B., Palmer, A., 2002. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. Proc. 15th IFAC World Congress, p.1050. [doi:10.3182/20020721-6-ES-1901.01052]

    Google Scholar 

  • Yao, B., Tomizuka, M., 1994. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance. Proc. American Control Conf., p.1176–1180. [doi:10.1109/ACC.1994.751934]

    Google Scholar 

  • Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893–900. [doi:10.1016/S0005-1098(96)00 222-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, B., Bu, F., Reedy, J., et al., 2000. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron., 5(1):79–91. [doi:10.1109/3516.828592]

    Article  Google Scholar 

  • Zhu, X.C., Tao, G.L., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9):2248–2257. [doi:10.1016/j.automatica.2008.01.015]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-fei Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Pf., Tao, Gl., Meng, Dy. et al. A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system. J. Zhejiang Univ. - Sci. C 15, 878–891 (2014). https://doi.org/10.1631/jzus.C1400003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400003

Key words

CLC number

Navigation