Skip to main content
Log in

Immune recovery after fluid resuscitation in rats with severe hemorrhagic shock

严重失血性休克大鼠液体复苏后的免疫修复

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of resuscitation with normal saline (NS), hypertonic saline (HTS), and hydroxyethyl starch (HES) on regulatory T cells (Tregs), helper T 1 (Th1)/Th2 and cytotoxic T 1 (Tc1)/Tc2 profiles in the treatment of hemorrhagic shock.

Methods

Rats subjected to severe hemorrhagic shock were resuscitated for 30 min with NS (n=8), HTS (n=8), or HES (n=8); sham (n=8) and naive control (n=8) groups were used for comparison. Following fluid resuscitation, the whole shed blood was reinfused for 30 min, and the rats were observed with continuous hemodynamic monitoring for 120 min. CD4+CD25+Foxp3+ Treg proportions, Th1/Th2 and Tc1/Tc2 profiles in spleen were analyzed by three-color flow cytometry.

Results

The proportion of CD4+CD25+Foxp3+ Tregs and ratios of Th1/Th2 and Tc1/Tc2 did not differ among control, sham, and HTS groups, but were significantly lower in NS and HES groups (both P<0.05 vs. sham); NS and HES levels were similar. The level of Tc1 was significantly increased in HTS (P<0.05 vs. sham), and levels of Tc2 were increased in NS, HES, and HTS groups compared to sham (all P<0.05), but did not differ from each other.

Conclusions

HTS resuscitation has a greater impact on immune system recovery than NS or HES by preserving the proportion of Tregs and maintaining the balance between Th1/Th2 and Tc1/Tc2 cells in the spleen. Thus, HTS resuscitation provides potential immunomodulatory activity in the early stage after hemorrhagic shock.

摘 要

目 的

严重失血性休克大鼠模型早期阶段使用不同的液 体复苏, 比较脾脏组织中调节性T 细胞(Tregs)、 辅助性T 细胞1(Th1)/Th2 以及细胞毒性T 细 胞1(Tc1)/Tc2 的不同变化, 初步探讨其免疫修 复机制。

创新点

(1)脾脏为机体重要免疫器官, 检测其中的免 疫细胞变化, 比外周血更具敏感性和特异性; (2)将免疫反应中多环节的免疫细胞变化进行 协同分析, 结果更具创新性和科学性, 为临床上 形成规范的救治方案提供了科学的实践资料。

方 法

将SD雄性大鼠随机分成5 组, 其中对照组和Sham 组(假手术)仅作为比较, 其余三组在建立严重 失血性休克大鼠模型后, 采用不同的液体复苏: 等渗盐水(NS 组)、高渗盐水(HTS 组)和羟 乙基淀粉(HES 组)。然后再灌注30 分钟, 并 持续监测血液动力学120 分钟, 最后心脏穿刺, 取脾脏组织, 通过三色荧光标记流式细胞术进一步分析CD4+CD25+Foxp3+ Treg 细胞含量, 以及 Th1/Th2 和Tc1/Tc2 的比值。

结 论

液体复苏后大鼠脾脏中CD4+CD25+Foxp3+ Tregs 细胞含量、Th1/Th2 和Tc1/Tc2 的比值在对照组、 Sham 组和HTS 组中无差异, 并都显著高于NS 组和HES 组。与Sham 组比较, HTS 组中Tc1 水 平明显升高, 而NS 组、HES 组和HTS 组中Tc2 水平均有升高, 且三组之间Tc2 水平无差别。因 此, 对于维持脾脏中Treg 细胞含量、Th1/Th2 和 Tc1/Tc2 平衡的作用上, HTS 液体复苏对免疫系 统的影响大于NS 和HES。综上所述, 在失血性 休克后的早期阶段HTS 复苏可提供潜在的免疫 修复作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, H.B., Stanton, K., Koustova, E., et al., 2004. Effect of different resuscitation strategies on neutrophil activation in a swine model of hemorrhagic shock. Resuscitation, 60(1):91–99. http://dx.doi.org/10.1016/j.resuscitation.2003.08.006

    Article  PubMed  Google Scholar 

  • Angele, M.K., Schneider, C.P., Chaudry, I.H., 2008. Benchto-bedside review: latest results in hemorrhagic shock. Crit. Care, 12(4):218. http://dx.doi.org/10.1186/cc6919

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros, J.M., do Nascimento, P. Jr., Marinello, J.L., et al., 2011. The effects of 6% hydroxyethyl starch-hypertonic saline in resuscitation of dogs with hemorrhagic shock. Anesth. Analg., 112(2):395–404. http://dx.doi.org/10.1213/ANE.0b013e3181f2e9b2

    Article  CAS  PubMed  Google Scholar 

  • Belkaid, Y., Rouse, B.T., 2005. Natural regulatory T cells in infectious disease. Nat. Immunol., 6(4):353–360. http://dx.doi.org/10.1038/ni1181

    Article  CAS  PubMed  Google Scholar 

  • Brøchner, A.C., Toft, P., 2009. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand. J. Trauma Resusc. Emerg. Med., 17:43. http://dx.doi.org/10.1186/1757-7241-17-43

    Article  Google Scholar 

  • Burgents, J.E., Moran, T.P., West, M.L., et al., 2010. The immunosuppressive tumor environment is the major impediment to successful therapeutic vaccination in Neu transgenic mice. J. Immunother., 33(5):482–491. http://dx.doi.org/10.1097/CJI.0b013e3181d756bb

    Article  CAS  PubMed  Google Scholar 

  • Carambia, A., Freund, B., Schwinge, D., et al., 2014. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J. Hepatol., 61(3):594–599. http://dx.doi.org/10.1016/j.jhep.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.M., Lv, J., Ma, K., et al., 2014. Assessment of internal mammary artery injury after blunt chest trauma: a literature review. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(10):864–869. http://dx.doi.org/10.1631/jzus.B1400098

    Article  Google Scholar 

  • Cui, Y., Sun, B., Wang, C., et al., 2014. Effects of different types of hydroxyethyl starch (HES) on microcirculation perfusion and tissue oxygenation in patients undergoing liver surgery. Int. J. Clin. Exp. Med., 7(3):631–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes, C.I., Llimona, F., Godoy, L.C., et al., 2009. Treatment of hemorrhagic shock with hypertonic saline solution modulates the inflammatory response to live bacteria in lungs. Braz. J. Med. Biol. Res., 42(10): 892–901. http://dx.doi.org/10.1590/S0100-879X2009005000024

    Article  CAS  PubMed  Google Scholar 

  • Fogle, J.E., Mexas, A.M., Tompkins, W.A., et al., 2010a. CD4+CD25+ T regulatory cells inhibit CD8+ IFN-γ production during acute and chronic FIV infection utilizing a membrane TGF-β-dependent mechanism. AIDS Res. Hum. Retroviruses, 26(2):201–216. http://dx.doi.org/10.1089/aid.2009.0162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogle, J.E., Tompkins, W.A., Tompkins, M.B., 2010b. CD4+CD25+ T regulatory cells from FIV+ cats induce a unique anergic profile in CD8+ lymphocyte targets. Retrovirology, 7:97. http://dx.doi.org/10.1186/1742-4690-7-97

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Zhao, W.X., Xue, F.S., et al., 2009. Effects of different resuscitation fluids on acute lung injury in a rat model of uncontrolled hemorrhagic shock and infection. J. Trauma, 67(6):1213–1219. http://dx.doi.org/10.1097/TA.0b013e31818cc1e4

    Article  CAS  PubMed  Google Scholar 

  • Gurfinkel, V., Poggetti, R.S., Fontes, B., et al., 2003. Hypertonic saline improves tissue oxygenation and reduces systemic and pulmonary inflammatory response caused by hemorrhagic shock. J. Trauma, 54(6):1137–1145. http://dx.doi.org/10.1097/01.TA.0000064452.37534.29

    Article  CAS  PubMed  Google Scholar 

  • Isayama, K., Murao, Y., Saito, F., et al., 2012. Effects of hypertonic saline on CD4+CD25+Foxp3+ regulatory T cells after hemorrhagic shock in relation to iNOS and cytokines. J. Surg. Res., 172(1):137–145. http://dx.doi.org/10.1016/j.jss.2010.07.042

    Article  CAS  PubMed  Google Scholar 

  • Ledderose, C., Bao, Y., Kondo, Y., et al., 2016. Purinergic signaling and the immune response in sepsis: a review. Clin. Ther., 38(5):1054–1065. http://dx.doi.org/10.1016/j.clinthera.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Qian, C.N., Zeng, Y.X., 2009. Regulatory T cells and EBV associated malignancies. Int. Immunopharmacol., 9(5):590–592. http://dx.doi.org/10.1016/j.intimp.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  • Loomis, W.H., Namiki, S., Ostrom, R.S., et al., 2003. Hypertonic stress increases T cell interleukin-2 expression through a mechanism that involves ATP release, P2 receptor, and p38 MAPK activation. J. Biol. Chem., 278(7):4590–4596. http://dx.doi.org/10.1074/jbc.M207868200

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y.Q., Cai, X.J., Gu, L.H., et al., 2007. Hypertonic saline resuscitation maintains a more balanced profile of T-lymphocyte subpopulations in a rat model of hemorrhagic shock. J. Zhejiang Univ.-Sci. B, 8(1):70–75. http://dx.doi.org/10.1631/jzus.2007.B0070

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y.Q., Huang, W.D., Cai, X.J., et al., 2008. Hypertonic saline resuscitation reduces apoptosis of intestinal mucosa in a rat model of hemorrhagic shock. J. Zhejiang Univ.-Sci. B, 9(11):879–884. http://dx.doi.org/10.1631/jzus.B0820116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y.Q., Gu, L.H., Huang, W.D., et al., 2010. Effect of hypertonic saline resuscitation on heme oxygenase-1 mRNA expression and apoptosis of the intestinal mucosa in a rat model of hemorrhagic shock. Chin. Med. J. (Engl.), 123(11):1453–1458. http://dx.doi.org/10.3760/cma.j.issn.0366-6999.2010.11.019

    CAS  Google Scholar 

  • Lu, Y.Q., Gu, L.H., Zhang, Q., et al., 2013. Hypertonic saline resuscitation contributes to early accumulation of circulating myeloid-derived suppressor cells in a rat model of hemorrhagic shock. Chin. Med. J. (Engl.), 126(7):1317–1322.

    CAS  Google Scholar 

  • Maier, R.V., Alam, H.B., 2011. Hemostatic and pharmacologic resuscitation: results of a long-term survival study in a swine polytrauma model. J. Trauma, 70(3):636–645. http://dx.doi.org/10.1097/TA.0b013e31820d0dcc

    Article  Google Scholar 

  • Marcu, A.C., Paccione, K.E., Barbee, R.W., et al., 2007. Androstenetriol immunomodulation improves survival in a severe trauma hemorrhage shock model. J. Trauma, 63(3):662–669. http://dx.doi.org/10.1097/TA.0b013e31802e70d9

    Article  CAS  PubMed  Google Scholar 

  • Menger, M.D., Vollmar, B., 2004. Surgical trauma: hyperinflammation versus immunosuppression? Langenbecks Arch. Surg., 389(6):475–484. http://dx.doi.org/10.1007/s00423-004-0472-0

    Article  PubMed  Google Scholar 

  • Miller, A.C., Rashid, R.M., Elamin, E.M., 2007. The “T” in trauma: the helper T-cell response and the role of immunomodulation in trauma and burn patients. J. Trauma, 63(6):1407–1417. http://dx.doi.org/10.1097/TA.0b013e31815b839e

    Article  CAS  PubMed  Google Scholar 

  • Moore, F.A., McKinley, B.A., Moore, E.E., 2004. The next generation in shock resuscitation. Lancet, 363(9425): 1988–1996. http://dx.doi.org/10.1016/S0140-6736(04)16415-5

    Article  PubMed  Google Scholar 

  • Moore, F.A., McKinley, B.A., Moore, E.E., et al., 2006. Inflammation and the host response to injury, a large-scale collaborative project: patient-oriented research core— standard operating procedures for clinical care. III. Guidelines for shock resuscitation. J. Trauma, 61(1):82–89. http://dx.doi.org/10.1097/01.ta.0000225933.08478.65

    Article  PubMed  Google Scholar 

  • Murao, Y., Loomis, W., Wolf, P., et al., 2003a. Effect of dose of hypertonic saline on its potential to prevent lung tissue damage in a mouse model of hemorrhagic shock. Shock, 20(1):29–34. http://dx.doi.org/10.1097/01.shk.0000071060.78689.f1

    Article  PubMed  Google Scholar 

  • Murao, Y., Hata, M., Ohnishi, K., et al., 2003b. Hypertonic saline resuscitation reduces apoptosis and tissue damage of the small intestine in a mouse model of hemorrhagic shock. Shock, 20(1):23–28. http://dx.doi.org/10.1097/01.shk.0000078832.57685.6c

    Article  PubMed  Google Scholar 

  • Murao, Y., Isayama, K., Saito, F., et al., 2009. Effect of hypertonic saline resuscitation on CD4+CD25+ regulatory T cells and γδ T cells after hemorrhagic shock and resuscitation in relation to apoptosis and iNOS. J. Trauma, 67(5):975–982. http://dx.doi.org/10.1097/TA.0b013e3181b83b7a

    Article  PubMed  Google Scholar 

  • National Research Council, 2011. Guide for the Care and Use of Laboratory Animals, 8th Ed. The National Academies Press, Washington, DC, USA. http://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-Use-of-Laboratory-Animals. pdf [Accessed on Apr. 10, 2016].

    Google Scholar 

  • Tang, L., Bai, J., Chung, C.S., et al., 2014. Active players in resolution of shock/sepsis induced indirect lung injury: immunomodulatory effects of Tregs and PD-1. J. Leukoc. Biol., 96(5):809–820. http://dx.doi.org/10.1189/jlb.4MA1213-647RR

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallet, B., 2011. Intravascular volume expansion: which surrogate markers could help the clinician to assess improved tissue perfusion? Anesth. Analg., 112(2):258–259. http://dx.doi.org/10.1213/ANE.0b013e3182066299

    Article  Google Scholar 

  • Vincenzi, R., Cepeda, L.A., Pirani, W.M., et al., 2009. Small volume resuscitation with 3% hypertonic saline solution decrease inflammatory response and attenuates end organ damage after controlled hemorrhagic shock. Am. J. Surg., 198(3):407–414. http://dx.doi.org/10.1016/j.amjsurg.2009.01.017

    Article  PubMed  Google Scholar 

  • Woehrle, T., Yip, L., Manohar, M., et al., 2010. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J. Leukoc. Biol., 88(6):1181–1189. http://dx.doi.org/10.1189/jlb.0410211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip, L., Cheung, C.W., Corriden, R., et al., 2007. Hypertonic stress regulates T-cell function by the opposing actions of extracellular adenosine triphosphate and adenosine. Shock, 27(3):242–250. http://dx.doi.org/10.1097/01.shk.0000245014.96419.3a

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A.B., Qian, Y.G., Zheng, S.S., 2016. Prognostic significance of regulatory T lymphocytes in patients with hepatocellular carcinoma. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(12):984–991. http://dx.doi.org/10.1631/jzus.B1600264

    Article  CAS  Google Scholar 

  • Zhang, Y., Liang, L., Wu, W., et al., 2008. Resuscitation with hydroxyethyl starch solution prevents CD4+ T-lymphocyte apoptosis and modulates the balance of T helper type 1 and T helper type 2 responses in the rat with traumatic virgule/shill hemorrhagic shock. Shock, 30(6):692–698. http://dx.doi.org/10.1097/SHK.0b013e31816f260d

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X.H., Jiang, J.K., Lu, Y.Q., 2015. Evaluation of efficacy of resin hemoperfusion in patients with acute 2,4-dinitrophenol poisoning by dynamic monitoring of plasma toxin concentration. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(8):720–726. http://dx.doi.org/10.1631/jzus.B1500101

    Article  CAS  Google Scholar 

  • Zhao, X.J., Pen, Z., Li, P., et al., 2013. ß-receptor blocker influences return of spontaneous circulation and chemical examination in rats during cardiopulmonary resuscitation. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(6): 505–510. http://dx.doi.org/10.1631/jzus.B1200293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-qiang Lu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 81272075)

ORCID: Yuan-qiang LU, http://orcid.org/0000-0002-9057-4344

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, F., Lu, Yq., Jiang, Jk. et al. Immune recovery after fluid resuscitation in rats with severe hemorrhagic shock. J. Zhejiang Univ. Sci. B 18, 402–409 (2017). https://doi.org/10.1631/jzus.B1600370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600370

Key words

关键词

CLC number

Navigation