Skip to main content
Log in

Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe

模拟研究气液两相在带缩径管的90°弯管内的流动

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The effect of a gradual contraction pipe (GCP) on gas-liquid flow in a circular-sectioned horizontal to vertical 90° duct bend was investigated by computational fluid dynamics (CFD) simulation. The hydrodynamics of gas-liquid flow in 90° duct bends with and without a GCP in the vertical section were compared using a 3D steady Eulerian-Eulerian approach. The predicted static pressure in the vertical section of the pipes and the pressure drop in the whole pipe were consistent with experimental data. Results of simulations showed that liquid could distribute more uniformly at the exit of the pipe with a GCP. The increased uniformity was accompanied by an increase in pressure drop by a factor of less than 10% compared to the pipe without a GCP. The position of minimum pressure in the bend was changed by the GCP. A GCP can alter the trajectories of the fluid and secondary flow. As a result, the fluid can quickly reach a steady state downstream from the bend.

中文概要

目 的

90°弯管广泛应用于工业中的流体输送, 但是流体 在经过弯头时会由于离心力的作用而导致弯头 下游管道内出现流体分布不均的现象, 从而影响 后续的生产过程。本文将实验和计算流体力学 (CFD)模拟的方法结合研究缩径管对经过弯头 后的流体整流作用并分析原因, 以期为缩径管在 工业中的应用提供一定的参考。

创新点

1. 提出在弯头后的管路中增加缩径管来调整流体 的方法; 2. 在冷模实验数据验证模拟结果的正确 性的基础上, 根据CFD 模拟得到的管道内的压 力、流体速度、相分布及湍动能分布详细分析了 缩径管能起整流作用的原因。

方法

1. 通过冷模实验所得的压力数据与模拟值进行对 比, 证明模拟所采用模型的正确性; 2. 通过对不 同流体入口条件模拟结果的比较, 找到缩径管的 作用规律; 3. 通过CFD 模拟得到管道内的压力、 流体速度、相分布及湍动能, 分析缩径管的整流 原理。

结论

1. 模拟所采用的模型可较好地反映管道内的流体 流动情况; 2. 缩径管能起到很好的整流效果; 3. 缩 径管可使流体加速, 促进流体的快速混合, 因此 能够使不稳定的流体快速达到稳定状态。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadpour, A., Noori Rahim Abadi, S.M.A., Kouhikamali, R., 2016. Numerical simulation of two-phase gas–liquid flow through gradual expansions/contractions. International Journal of Multiphase Flow, 79:31–49. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.10.008

    Article  MathSciNet  Google Scholar 

  • Akilli, H., Levy, E.K., Sahin, B., 2001. Gas-solid flow behavior in a horizontal pipe after a 90 degrees verticalto-horizontal elbow. Powder Technology, 116(1): 43–52. http://dx.doi.org/10.1016/S0032-5910(00)00360-0

    Article  Google Scholar 

  • Alizadehdakhel, A., Rahimi, M., Sanjari, J., et al., 2009. CFD and artificial neural network modeling of two-phase flow pressure drop. International Communications in Heat and Mass Transfer, 36(8): 850–856. http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.05.005

    Article  Google Scholar 

  • Azzi, A., Friedel, L., Belaadi, S., 1999. Two-phase gas/liquid flow pressure loss in bends. Forschung im Ingenieurwesen, 65(7): 309–318. http://dx.doi.org/10.1007/BF03035112

    Article  Google Scholar 

  • Baker, O., 1954. Simultaneous flow of oil and gas. Oil Gas Journal, 53(1): 85–95.

    Google Scholar 

  • Bilirgen, H., Levy, E.K., 2011. Mixing and dispersion of particle ropes in lean phase pneumatic conveying. Powder Technology, 119(2-3):134–152. http://dx.doi.org/10.1016/S0032-5910(00)00413-7

    Article  Google Scholar 

  • Burger, M., Klose, G., Rottenkolber, G., et al., 2002. A combined Eulerian and Lagrangian method for prediction of evaporating sprays. Journal of Engineering for Gas Turbines and Power, 124:481–488. http://dx.doi.org/10.1115/1.1473153

    Article  Google Scholar 

  • Chen, H.J., Zhang, B.Z., Su, X.Y., 2003. Low frequency oscillatory flow in a rotating curved pipe. Journal of Zhejiang University-SCIENCE, 4(4): 407–414. http://dx.doi.org/10.1631/jzus.2003.0407

    Article  Google Scholar 

  • Crawford, N., Spence, S., Simpson, A., et al., 2009. A numerical investigation of the flow structures and losses for turbulent flow in 90 degrees elbow bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 223(1): 27–44. http://dx.doi.org/10.1243/09544089JPME206

    Article  Google Scholar 

  • Fan, J.R., Yao, J., Cen, K.F., 2002. Antierosion in a 90 degrees bend by particle impaction. AIChE Journal, 48(7): 1401–1412. http://dx.doi.org/10.1002/aic.690480705

    Article  Google Scholar 

  • He, Y.L., Zhao, C.F., Ding, W.J., et al., 2007. Twodimensional numerical simulation and performance analysis of tapered pulse tube refrigerator. Applied Thermal Engineering, 27(11-12):1876–1882. http://dx.doi.org/10.1016/j.applthermaleng.2006.12.022

    Article  Google Scholar 

  • Holley, B., Faghri, A., 2005. Analysis of pulsating heat pipe with capillary wick and varying channel diameter. International Journal of Heat and Mass Transfer, 48(13): 2635–2651. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.01.013

    Article  MATH  Google Scholar 

  • Iacovides, H., Launder, B.E., Loizou, P.A., et al., 1990. Turbulent boundary-layer development around a squaresectioned U-bend measurements and computation. Journal of Fluids Engineering, 112(4): 409–415. http://dx.doi.org/10.1115/1.2909418

    Article  Google Scholar 

  • Kim, S., Park, J.H., Kojasoy, G., et al., 2007. Geometric effects of 90-degree elbow in the development of interfacial structures in horizontal bubbly flow. Nuclear Engineering and Design, 237(20-21):2105–2113. http://dx.doi.org/10.1016/j.nucengdes.2007.02.007

    Article  Google Scholar 

  • Kim, S., Kojasoy, G., Guo, T.W., 2010. Two-phase minor loss in horizontal bubbly flow with elbows: 45 degrees and 90 degrees elbows. Nuclear Engineering and Design, 240(2): 284–289. http://dx.doi.org/10.1016/j.nucengdes.2008.08.019

    Article  Google Scholar 

  • Kolmogorov, A.N., 1949. On the disintegration of drops in a turbulent flow. Doklady Akademii Nauk SSSR, 66:825.

    MATH  Google Scholar 

  • Kuan, B., Yang, W., Schwarz, M.P., 2007. Dilute gas-solid two-phase flows in a curved 90 degrees duct bend: CFD simulation with experimental validation. Chemical Engineering Science, 62(7): 2068–2088. http://dx.doi.org/10.1016/j.ces.2006.12.054

    Article  Google Scholar 

  • Launder, B.E., Spalding, D.B., 1972. Lectures in Mathematical Models of Turbulence. Academic Press, London, UK.

    MATH  Google Scholar 

  • Li, T.W., Pougatch, K., Salcudean, M., et al., 2010. Numerical simulation of an evaporative spray in a gas-solid crossflow. International Journal of Chemical Reactor Engineering, 8(1):A43. http://dx.doi.org/10.2202/1542-6580.2031

    Google Scholar 

  • Liu, Y., Miwa, S., Hibiki, T., et al., 2012. Experimental study of internal two-phase flow induced fluctuating force on a 90 degrees elbow. Chemical Engineering Science, 76:173–187. http://dx.doi.org/10.1016/j.ces.2012.04.021

    Article  Google Scholar 

  • Moukalled, F., Darwish, M., 2008. Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds. Physics of Fluids, 20:040804. http://dx.doi.org/10.1063/1.2912127

    Article  MATH  Google Scholar 

  • Njobuenwu, D.O., Fairweather, M., Yao, J., 2012. Prediction of turbulent gas-solid flow in a duct with a 90 degrees bend using an Eulerian-Lagrangian approach. AIChE Journal, 58(1): 14–30. http://dx.doi.org/10.1002/aic.12572

    Article  Google Scholar 

  • Paliwoda, A., 1992. Generalized method of pressure drop calculation across pipe components containing two-phase flow of refrigerants. International Journal of Refrigeration, 15(2): 119–125. http://dx.doi.org/10.1016/0140-7007(92)90036-T

    Article  Google Scholar 

  • Rutten, F., Meinke, M., Schroder, W., 2001. Large-eddy simulations of 90 degrees pipe bend flows. Journal of Turbulence, 2(3): 1–14.

    Google Scholar 

  • Schiller, L., Naumann, A., 1935. A drag coefficient correlation. Zeitschrift Des Vereines Deutscher Ingenieure, 77:318–320.

    Google Scholar 

  • Shiraishi, M., Ikeguchi, T., Murakami, M., et al., 2002. Visualization of oscillatory flow phenomena in tapered pulse tube refrigerators. AIP Conference Proceedings, 613(1): 768–775. http://dx.doi.org/10.1063/1.1472093

    Article  Google Scholar 

  • Spedding, P.L., Benard, E., 2007. Gas-liquid two phase flow through a vertical 90 degrees elbow bend. Experimental Thermal and Fluid Science, 31(7): 761–769. http://dx.doi.org/10.1016/j.expthermflusci.2006.08.003

    Article  Google Scholar 

  • Spedding, P.L., Benard, E., Donnelly, G.F., 2006. Prediction of pressure drop in multiphase horizontal pipe flow. International Communications in Heat and Mass Transfer, 33(9): 1053–1062. http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.05.004

    Article  Google Scholar 

  • Sroka, L.M., Forney, L.J., 1989. Fluid mixing in a 90-degrees pipeline elbow. Industrial & Engineering Chemistry Research, 28(6): 850–856. http://dx.doi.org/10.1021/ie00090a030

    Article  Google Scholar 

  • Tunstall, M.J., Harvey, J.K., 1968. On effect of a sharp bend in a fully developed turbulent pipe-flow. Journal of Fluid Mechanics, 34(3): 595–608. http://dx.doi.org/10.1017/S0022112068002107

    Article  Google Scholar 

  • Vashisth, S., Grace, J.R., 2012. Simulation of granular transport of Geldart type-A, -B, and -D particles through a 90 degrees elbow. Industrial & Engineering Chemistry Research, 51(4): 2030–2047. http://dx.doi.org/10.1021/ie200647e

    Article  Google Scholar 

  • Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2003. Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend. International Journal of Heat and Mass Transfer, 46(16): 2975–2981. http://dx.doi.org/10.1016/S0017-9310(03)00071-1

    Article  Google Scholar 

  • Wang, C.C., Chen, I.Y., Yang, Y.W., et al., 2004. Influence of horizontal return bend on the two-phase flow pattern in small diameter tubes. Experimental Thermal and Fluid Science, 28(2-3):145–152. http://dx.doi.org/10.1016/S0894-1777(03)00033-5

    Article  Google Scholar 

  • Weske, J.R., 1948. Experimental investigation of velocity distributions downstream of single dust bends. Technical Report NACA-TN-1471, NASA, Washington DC,USA.

    Google Scholar 

  • Yang, L.W., 2009. Experimental research of high frequency tapered pulse tube cooler. Cryogenics, 49(12): 738–741. http://dx.doi.org/10.1016/j.cryogenics.2009.09.002

    Article  Google Scholar 

  • Yao, L.S., Berger, S.A., 1975. Entry flow in a curved pipe. Journal of Fluid Mechanics, 67(1): 177–196. http://dx.doi.org/10.1017/S0022112075000237

    Article  MATH  Google Scholar 

  • Zhang, H., Tan, Y.Q., Yang, D.M., et al., 2012. Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow. Powder Technology, 217:467–476. http://dx.doi.org/10.1016/j.powtec.2011.11.003

    Article  Google Scholar 

  • Zhang, P.S., Roberts, R.M., Benard, A., 2013. Numerical simulation of turbulent mist flows with liquid film formation in curved pipes using an Eulerian–Eulerian method. Journal of Fluids Engineering, 135(9):091303. http://dx.doi.org/10.1115/1.4024264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-liang Huang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 91434205), the National Science Fund for Distinguished Young Scholars (No. 21525627), the Zhejiang Provincial Natural Science Foundation of China (No. LR14B060001), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130101110063)

ORCID: Zheng-liang HUANG, http://orcid.org/0000-0002-8457-6394

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Df., Huang, Zl., Sun, Jy. et al. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe. J. Zhejiang Univ. Sci. A 18, 212–224 (2017). https://doi.org/10.1631/jzus.A1600016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600016

Key words

关键词

CLC number

Navigation