Skip to main content
Log in

On the role of the constitutive model and basal texture on the mechanical behaviour of magnesium alloy AZ31B sheet

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The recently developed elastic-viscoplastic self-consistent model with various self-consistent schemes was applied to study the effect of basal texture on the mechanical behavior of magnesium alloy AZ31B sheet. The influence of the basal texture was investigated using various initial textures generated by artificially tilting the measured texture of the reference AZ31B sheet around in a transverse direction. The material parameters for the various models were fitted to experimental uniaxial tension and compression along the rolling direction and were then used to study the effects of the basal texture on the yield stress, R value, ultimate stress and uniform strain under uniaxial tension. The effect of the basal texture on sheet metal forming was further assessed by calculating the limit strain under in-plane plane strain tension. An assessment of the predictive capability of polycrystal plasticity models was made based on comparisons of predictions and experimental observations. Among the available self-consistent approaches, the Affine self-consistent scheme resulted in the best overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew, S.R., Duygulu, O., 2005. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity, 21(6):1161–1193. [doi:10.1016/j.ijplas.2004.05.018]

    Article  MATH  Google Scholar 

  • Agnew, S.R., Horton, J.A., Lillo, T.M., Brown, D.W., 2004. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Materialia, 50(3):377–381. [doi:10.1016/j.scriptamat.2003.10.006]

    Article  Google Scholar 

  • Anand, L., Kalidindi, S.R., 1994. The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture. Mechanics of Materials, 17(2–3):223–243. [doi:10.1016/0167-6636(94)90062-0]

    Article  Google Scholar 

  • Asaro, R.J., Needleman, A., 1985. Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica et Materialia, 33:923–953.

    Article  Google Scholar 

  • Avery, D.H., Hosford, W.F., Backofen, W.A., 1965. Plastic anisotropy in magnesium alloy sheets. Transactions of the Metallurgical Society of AIME, 233:71–78.

    Google Scholar 

  • Barlat, F., Yoon, J.W., Cazacu, O., 2007. On linear transformation based anisotropic yield functions. International Journal of Plasticity, 23(5):876–896. [doi:10.1016/j.ijplas.2006.10.001]

    Article  MATH  Google Scholar 

  • Beyerlein, I.J., Tomé, C.N., 2010. A probabilistic twin nucleation model for HCP polycrystalline metals. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 466(2121):2517. [doi:10.1098/rspa.2009.0661]

    Article  Google Scholar 

  • Chino, Y., Sassa, K., Mabuchi, M., 2008. Enhancement of tensile ductility of magnesium alloy produced by torsion extrusion. Scripta Materialia, 59(4):399–402. [doi:10.1016/j.scriptamat.2008.04.013]

    Article  Google Scholar 

  • del Valle, J.A., Ruano, O.A., 2009. Effect of annealing treatments on the anisotropy of a magnesium alloy sheet processed by severe rolling. Materials Letters, 63(17): 1551–1554. [doi:10.1016/j.matlet.2009.04.014]

    Article  Google Scholar 

  • Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(1226):376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartig, Ch., Styczynski, A., Kaiser, F., Letzig, D., 2005. Plastic anisotropy and texture evolution of rolled AZ31 magnesium alloys. Materials Science Forum, 495–497: 1615–1620. [doi:10.4028/www.scientific.net/MSF.495-497.1615]

    Article  Google Scholar 

  • Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N., 2008. Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling. Materials Science and Engineering: A, 488(1–2): 214–220. [doi:10.1016/j.msea.2007.11.029]

    Article  Google Scholar 

  • Hutchinson, J.W., 1976. Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 348(1652):101–127.

    Article  MATH  Google Scholar 

  • Jain, A., Agnew, S.R., 2007. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Materials Science and Engineering: A, 462(1–2):29–36. [doi:10.1016/j.msea.2006.03.160]

    Article  Google Scholar 

  • Kaiser, F., Letzig, D., Bohlen, J., Styczynski, A., Hartig, Ch., Kainer, K.U., 2003. Anisotropic properties of magnesium sheet AZ31. Materials Science Forum, 419-422:315–320. [doi:10.4028/www.scientific.net/MSF.419-422.315]

    Article  Google Scholar 

  • Kalidindi, S.R., 2001. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals. International Journal of Plasticity, 17(6):837–860. [doi:10.1016/S0749-6419(00)00071-1]

    Article  MATH  Google Scholar 

  • Lebensohn, R.A., Tomé, C.N., 1993. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica et Materialia, 41(9): 2611–2624. [doi:10.1016/0956-7151(93)90130-K]

    Article  Google Scholar 

  • Lebensohn, R.A., Turner, P.A., Signorelli, J.W., Canova, G.R., Tomé, C.N., 1998. Calculation of intergranular stresses based on a large strain visco-plastic self-consistent model. Modelling and Simulation in Materials Science and Engineering, 6(4):447–465. [doi:10.1088/0965-0393/6/4/011]

    Article  Google Scholar 

  • Lebensohn, R.A., Dawson, P.R., Kern, H.M., Wenk, H.R., 2003. Heterogeneous deformation and texture development in halite polycrystals: comparison of different modeling approaches and experimental data. Tectonophysics, 370(1–4):287–311. [doi:10.1016/S0040-1951(03)00192-6]

    Article  Google Scholar 

  • Lebensohn, R.A., Tomé, C.N., Castañeda, P.P., 2007. Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations. Philosophical Magazine, 87(28):4287–4322. [doi:10.1080/14786430701432619]

    Article  Google Scholar 

  • Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H., 2007. Hardening evolution of AZ31B Mg sheet. International Journal of Plasticity, 23(1):44–86. [doi:10.1016/j.ijplas.2006.03.005]

    Article  MATH  Google Scholar 

  • MacEwen, S.R., Tomé, C., Faber, J., 1989. Residual-stresses in annealed zircaloy. Acta Metallurgica, 37(3):979–989. [doi:10.1016/0001-6160(89)90025-4]

    Article  Google Scholar 

  • MacEwen, S.R., Christodoulou, N., Salinasrodriguez, A., 1990. Residual grain-interaction stresses in zirconium alloys. Metallurgical Transactions, 21A:1083–1095.

    Article  Google Scholar 

  • Marciniak, Z., Kuczynski, K., 1967. Limit strains in the process of stretch-forming sheet metal. International Journal of Mechanical Sciences, 9(9):609–620. [doi:10.1016/0020-7403(67)90066-5]

    Article  MATH  Google Scholar 

  • Molinari, A., Tóth, L.S., 1994. Tuning a self-consistent viscoplastic model by finite element results. Part I: Modeling. Acta Metallurgica et Materialia, 42(7):2453–2458. [doi:10.1016/0956-7151(94)90324-7]

    Article  Google Scholar 

  • Molinari, A., Canova, G.R., Ahzi, S., 1987. A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12):2983–2994. [doi:10.1016/0001-6160(87)90297-5]

    Article  Google Scholar 

  • Mukai, T., Yamanoi, M., Watanabe, H., Higashi, K., 2001. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Materialia, 45(1): 89–94. [doi:10.1016/S1359-6462(01)00996-4]

    Article  Google Scholar 

  • Muransky, O., Carr, D.G., Barnett, M.R., Oliver, E.C., Sittner, P., 2008. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: in situ neutron diffraction and EPSC modelling. Materials Science and Engineering: A, 496(1–2):14–24. [doi:10.1016/j.msea.2008.07.031]

    Article  Google Scholar 

  • Proust, G., Tomé, C.N., Jain, A., Agnew, S.R., 2009. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. International Journal of Plasticity, 25(5):861–880. [doi:10.1016/j.ijplas.2008.05.005]

    Article  MATH  Google Scholar 

  • Shi, Y., Wu, P.D., Lloyd, D.J., Embury, J.D., 2010. Crystal plasticity based analysis of localized necking in aluminum tube under internal pressure. European Journal of Mechanics A/Solids, 29(4):475–483. [doi:10.1016/j.euromechsol.2010.03.005]

    Article  Google Scholar 

  • Staroselsky, A., Anand, L., 1998. Inelastic deformation of F.C.C. materials by slip and twinning. Journal of the Mechanics and Physics of Solids, 46(4):671–696. [doi:10.1016/S0022-5096(97)00071-9]

    Article  MATH  Google Scholar 

  • Taylor, G.I., 1938. Plastic strain in metals. Journal of the Institute of Metals, 62:307–324.

    Google Scholar 

  • Tomé, C.N., 1999. Self-consistent polycrystal models: a directional compliance criterion to describe grain interactions. Modeling and Simulation in Material Science Engineering, 7(5):723–738. [doi:10.1088/0965-0393/7/5/305]

    Article  Google Scholar 

  • Tomé, C.N., Lebensohn, R.A., Kocks, U.F., 1991. A model for texture development dominated by deformation twinningapplication to zirconium alloys. Acta Metallurgica et Materialia, 39(11):2667–2680. [doi:10.1016/0956-7151(91)90083-D]

    Article  Google Scholar 

  • Wang, H., Wu, P.D., Tomé, C.N., Huang, Y., 2010a. A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58(4):594–612. [doi:10.1016/j.jmps.2010.01.004]

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., Raeisinia, B., Wu, P.D., Agnew, S.R., Tomé, C.N., 2010b. Evaluation of self-consistent crystal plasticity models for magnesium alloy AZ31B sheet. International Journal of Solids and Structures, 47(21):2905–2917. [doi:10.1016/j.ijsolstr.2010.06.016]

    Article  MATH  Google Scholar 

  • Wang, H., Wu, P.D., Gharghouri, M.A., 2010c. Effects of basal texture on mechanical behaviour of magnesium alloy AZ31 sheet. Materials Science and Engineering: A, 527(15):3588–3594. [doi:10.1016/j.msea.2010.02.050]

    Article  Google Scholar 

  • Wu, P.D., Neale, K.W., van der Giessen, E., 1997. On crystal plasticity FLD analysis. Proceedings of the Royal Society of London. Series A, Mathematical, Physical and Engineering Sciences, 453(1964):1831–1848. [doi:10.1098/rspa.1997.0099]

    Article  Google Scholar 

  • Wu, P.D., Neale, K.W., van der Giessen, E., Jain, M., Makinde, A., MacEwen, S.R., 1998. Crystal plasticity forming limit diagram analysis of rolled aluminum sheets. Metallurgical and Materials Transactions A, 29(2):527–535. [doi:10.1007/s11661-998-0134-x]

    Article  Google Scholar 

  • Wu, P.D., Jain, M., Savoie, J., MacEwen, S.R., Tugcu, P., Neale, K.W., 2003. Evaluation of anisotropic yield functions for aluminum sheets. International Journal of Plasticity, 19(1):121–138. [doi:10.1016/S0749-6419(01)00033-X]

    Article  MATH  Google Scholar 

  • Wu, P.D., MacEwen, S.R., Lloyd, D.J., Neale, K.W., 2004a. A mesoscopic approach for predicting sheet metal formability. Modelling and Simulation in Materials Science and Engineering, 12(3):511–527. [doi:10.1088/0965-0393/12/3/011]

    Article  Google Scholar 

  • Wu, P.D., MacEwen, S.R., Lloyd, D.J., Neale, K.W., 2004b. Effect of cube texture on sheet metal formability. Materials Science and Engineering: A, 364(1–2):182–187. [doi:10.1016/j.msea.2003.08.020]

    Article  Google Scholar 

  • Wu, P.D., Graf, A., MacEwen, S.R., Lloyd, D.J., Jain, M., Neale, K.W., 2005. On forming limit stress diagram analysis. International Journal of Solids and Structures, 42(8):2225–2241. [doi:10.1016/j.ijsolstr.2004.09.010]

    Article  MATH  Google Scholar 

  • Wu, P.D., Huang, Y., Lloyd, D.J., 2006. Studying grain fragmentation in ECAE by simulating simple shear. Scripta Materialia, 54(12):2107–2112. [doi:10.1016/j.scriptamat.2006.03.016]

    Article  Google Scholar 

  • Wu, P.D., Lloyd, D.J., Jain, M., Neale, K.W., Huang, Y., 2007. Effects of spatial grain orientation distribution and initial surface topography on sheet metal necking. International Journal of Plasticity, 23(6):1084–1104. [doi:10.1016/j.ijplas.2006.11.005]

    Article  MATH  Google Scholar 

  • Wu, X., Kalidindi, S.R., Necker, C., Salem, A.A., 2007. Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model. Acta Materialia, 55(2):423–432. [doi:10.1016/j.actamat.2006.08.034]

    Article  Google Scholar 

  • Xu, F., Holt, R.A., Daymond, M.R., 2008. Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2. Acta Materialia, 56(14):3672–3687. [doi:10.1016/j.actamat.2008.04.019]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Wu.

Additional information

Project supported by the Natural Sciences and Engineering Research Council (NSERC) Magnesium Strategic Research Network, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wu, P.D. & Neale, K.W. On the role of the constitutive model and basal texture on the mechanical behaviour of magnesium alloy AZ31B sheet. J. Zhejiang Univ. Sci. A 11, 744–755 (2010). https://doi.org/10.1631/jzus.A1000107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000107

Key words

CLC number

Navigation