Skip to main content
Log in

Treatment and hydraulic performances of the NiiMi process for landscape water

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

This paper describes the NiiMi process designed to treat landscape water. The main aim of the research was to investigate the feasibility of NiiMi for removing organic and nutriment materials from landscape water. During the batch-scale NiiMi operation, the removal rates of color ranged from 66.7%–80%, of turbidity from 31.7%–89.3%, of chemical oxygen demand (COD) from 7%–36.5%, of total phosphor (TP) from 43%–84.2%, of soluble phosphate from 42.9%–100%, of total nitrogen (TN) from 4.2%–46.7%, and of NH4 +-N from 39.3%–100% at the hydraulic loading of 0.2 m3/(m2·d). Results showed that the removal efficiencies of COD, TP, soluble phosphate and TN decreased with the decline in the temperature. The NiiMi process had a strong shock loading ability for the removal of the organics, turbidity, TP, soluble phosphate, TN and NH4 +-N. Three sodium chloride tracer studies were conducted, labeled as TS1, TS2, and TS3, respectively. The mean hydraulic retention times (mean HRTs) were 31 h and 28 h for TS1 and TS2, respectively, indicating the occurrence of a dead zone volume of 12% and 20% for TS1 and TS2, respectively. TS1 and TS2 displayed the occurrence of short-circuiting in the NiiMi system. The comparison results between TS1 and TS2 were further confirmed in the values obtained for some indicators, such as volumetric efficiency (e), short-circuiting (S), hydraulic efficiency (λ) and number of continuously stirred tank reactors (N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achak, M., Mandi, L., Ouazzani, N., 2009. Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Journal of Environmental Management, 90(8):2771–2779. [doi:10.1016/j.jenvman.2009.03.012]

    Article  Google Scholar 

  • Babatunde, A.O., Zhao, Y.Q., Neill, M.O., Sullivan, B.O., 2008. Constructed wetlands for environmental pollution control: a review of developments, research and practice in Ireland. Environment International, 34(1):116–126. [doi:10.1016/j.envint.2007.06.013]

    Article  Google Scholar 

  • Beach, D.N.H., McCray, J.E., Lowe, S.K., Siegrist, R.L., 2005. Temporal changes in hydraulic conductivity of sand porous media biofilters during wastewater infiltration due to biomat formation. Journal of Hydrology, 311(1–4):230–243. [doi:10.1016/j.jhydrol.2005.01.024]

    Article  Google Scholar 

  • Beal, C.D., Gardner, E.A., Menzies, N.W., 2005. Process, performance and pollution potential: A review of septic tank-soil absorption systems. Australian Journal of Soil Research, 43(7):781–802. [doi:10.1071/SR05018]

    Article  Google Scholar 

  • Chen, P., 2000. The line adsorption equation: the one-dimensional counterpart of the Gibbs adsorption equation. Colloids and Surfaces, 161(1):23–30. [doi:10.1016/S0927-7757(99)00322-2]

    Article  Google Scholar 

  • Cheung, K.C., Venkitachalam, T.H., 2000. Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere, 41(1–2):243–249. [doi:10.1016/S0045-6535(99)00417-8]

    Article  Google Scholar 

  • Chinese EPA, 2002. Standard Analytic Methods for the Examination of Water and Wastewater, 4th Edition. Chinese Environmental Science Publisher, Beijing, China. (in Chinese)

    Google Scholar 

  • Eldridge, D.J., Zaady, E., Shachak, M., 2000. Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev. Israel Catena, 40(3): 323–336. [doi:10.1016/S0341-8162(00)00082-5]

    Article  Google Scholar 

  • El-Masry, M.H., EI-Bestawy, E., El-Adl, N.I., 2004. Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. World Journal of Microbiology and Biotechnology, 20(6):551–557. [doi:10.1023/B:WIBI.0000043162.17813.17]

    Article  Google Scholar 

  • Hamoda, M.F., Al-Ghusain, I., Al-Mutairi, N.Z., 2004. Sand filtration of wastewater for tertiary treatment and water reuse. Desalination, 164(3):203–211. [doi:10.1016/S0011-9164(04)00189-4]

    Article  Google Scholar 

  • He, L., 2004. Pilot Study on Treating Urban Landscape River Water by Hybrid Ecological Process. MS Thesis, Shanghai Jiao Tong University, p.25–54 (in Chinese).

  • He, S.B., Yan, L., Kong, H.N., Liu, Z.M., Wu, E.Y., Hu, Z.B, 2007. Treatment efficiencies of constructed wetlands for eutrophic landscape river water. Pedosphere, 17(4): 522–528. [doi:10.1016/S1002-0160(07)60062-9]

    Article  Google Scholar 

  • Healy, M.G., Rodgers, M., Malqueen, J., 2007. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresource Technology, 98(12): 2268–2281. [doi:10.1016/j.biortech.2006.07.036]

    Article  Google Scholar 

  • Hu, H.Y., Cheng, Y.L., Lin, J.Y., 2007. On-site treatment of septic tank effluent by using a soil adsorption system. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 11(3):197–206.

    Article  Google Scholar 

  • Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., Ammar, E., 2008. Olive mill wastewater stabilization in open-air ponds: Impact on clay-sandy soil. Bioresource Technology, 99(16):7699–7708. [doi:10.1016/j.biortech.2008. 01.074]

    Article  Google Scholar 

  • Jiang, X., Jin, X.K., Yao, Y., Li, L.H., Wu, F.C., 2008. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research, 42(8–9): 2251–2259. [doi:10.1016/j.watres.2007.12.003]

    Article  Google Scholar 

  • Jing, S.R., Lin, Y.F., Lee, D.Y., Wang, T.W., 2001. Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technology, 76(2):131–135. [doi:10.1016/S0960-8524(00)00100-0]

    Article  Google Scholar 

  • Kadlec, R.H., Knight, R.L., 1996a. Phosphorus Treatment Wetlands. Lewis Publishers, Michigan, p.443–480.

    Google Scholar 

  • Kadlec, R.H., Knight, R.L., 1996b. Treatment Wetlands. Lewis-CRC Press, Boca Raton, FL, p.443–480.

    Google Scholar 

  • Kruzic, A.P., 1997. Natural treatment and on-site processes. Water Environment Research, 69(4):522–526. [doi:10.2175/106143097X134812]

    Article  Google Scholar 

  • Kuschk, P., Wießner, A., Kappelmeyer, U., Weißbrodt, E., Kästner, M., Stottmeister, U., 2003. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Research, 37(17):4236–4242. [doi:10.1016/S0043-1354 (03)00163-5]

    Article  Google Scholar 

  • Li, B., Qian, W.M., Lu, J.L., 2007. Enhanced denitrogenation for decentralized wastewater by diffluent subsurface infiltration. Technology of Water Treatment, 33(8):34–37 (in Chinese).

    Google Scholar 

  • Lowe, K.S., Siegrist, R.L., 2008. Controlled field experiment for performance evaluation of septic tank effluent treatment during soil infiltration. Journal of Environmental Engineering, 134(2): 93–101. [doi:10.1061/(ASCE)0733-9372(2008)134:2(93)]

    Article  Google Scholar 

  • Mulligan, C.N., Davarpanah, N., Fukue, M., Inoue, T., 2009. Filtration of contaminated suspended solids for the treatment of surface water. Chemosphere, 74(6):779–786. [doi:10.1016/j.chemosphere.2008.10.055]

    Article  Google Scholar 

  • Munoz, P., Drizo, A., Hession, W.C., 2006. Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Research, 40(17):3209–3218. [doi:10.1016/j.watres.2006.06.036]

    Article  Google Scholar 

  • Persson, J., Somes, N.L.G., Wong, T.H.F., 1999. Hydraulics efficiency of constructed wetlands and ponds. Water Science & Technology, 40(3):291–300. [doi:10.1016/S0273-1223(99)00448-5]

    Article  Google Scholar 

  • Persson, J., Wittgren, H.B., 2003. How hydrological and hydraulic conditions affect performance of ponds. Ecological Engineering, 21(4–5):259–269. [doi:10.1016/j.ecoleng.2003.12.004]

    Article  Google Scholar 

  • Sakadevan, K., Bavor, H.J., 1998. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2):393–399. [doi:10.1016/S0043-1354(97) 00271-6]

    Article  Google Scholar 

  • Siriwardene, N.R., Deletic, A., Fletcher, T.D., 2007. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 41(7): 1433–1440. [doi:10.1016/j.watres.2006.12.040]

    Article  Google Scholar 

  • Suliman, F., French, H., Haugen, L.E., Kløve, B., Jenssen, P., 2005. The Effect of the Scale of Horizontal Subsurface Flow Constructed Wetlands on Flow and Transport Parameters Q. IWA Publishing, 51(9):259–266.

    Google Scholar 

  • Sun, T., He, Y., 1998. Treatment of domestic wastewater by underground capillary seepage system. Ecological Engineering, 11(1–4):111–119. [doi:10.1016/S0925-8574 (98)00027-5]

    Article  Google Scholar 

  • Tanık, A., Comakoğlu, B., 1996. Nutrient removal from domestic wastewater by rapid infiltration system. Journal of Arid Environments, 34(3):379–390. [doi:10.1006/jare.1996.0118]

    Article  Google Scholar 

  • US EPA, 2002. Onsite Wastewater Treatment Systems Manual. EPA/625/R-00/008. US Environmental Protection Agency.

  • Wang, X., Meng, Z.M., Chen, B., Yang, Z.F., Li, C., 2009. Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. Communications in Nonlinear Science and Numerical Simulation, 14(3):935–945. [doi:10.1016/j.cnsns.2007.07.018]

    Article  Google Scholar 

  • Werner, T., Kadlec, R., 2000. Wetland residence time distribution modeling. Ecological Engineering, 15(1–2):77–90. [doi:10.1016/S0925-8574(99)00036-1]

    Article  Google Scholar 

  • Yamaguchi, T., Moldrup, P., Rolston, S.I., Tearnishi, S., 1996. Nitrification in porous media during rapid, unsaturated water flow. Water Research, 30(3):531–540. [doi:10.1016/0043-1354(95)00206-5]

    Article  Google Scholar 

  • Zhang, J., Huang, X., Liu, C.X., Shi, H.C., Hu, H.Y., 2005. Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system. Ecological Engineering, 25:419–428. [doi:10.1016/j.ecoleng.2005.06.011]

    Article  MATH  Google Scholar 

  • Zhang, J., Huang, X., Shao, C.F., Liu, C.X., Shi, H.C., Hu, H.Y., Liu, Z.Q., 2004. Influence of packing media on nitrogen removal in a subsurface infiltration system. Journal of Environmental Science, 16(1):153–156.

    Google Scholar 

  • Zhao, Q.L., Xue, S., You, S.J., Wang, L.N., 2007. Removal and transformation of organic matter during soil-aquifer treatment. Journal of Zhejiang University SCIENCE A, 8(5):712–718. [doi:10.1631/jzus.2007.A0712]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhang, Lb., Wu, Yf. et al. Treatment and hydraulic performances of the NiiMi process for landscape water. J. Zhejiang Univ. Sci. A 11, 132–142 (2010). https://doi.org/10.1631/jzus.A0900437

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900437

Key words

CLC number

Navigation