Skip to main content
Log in

Factors influencing the formation of chlorination brominated trihalomethanes in drinking water

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

The formation of brominated trihalomethanes (THMs-Br) which is proved more carcinogenic than their chlorinated analogues reported was very different at various water qualities. This study was performed to assess the effects of water quality parameters (bromide concentration, pH value and ammonia concentration), chlorination conditions (chlorine dose, reaction time) and ratios of Br/DOC and Br/Cl2 consumption on the formation and distribution of THMs-Br in chlorination. The results showed good correlation between the bromine incorporation factor (BIF) n(Br) and Br/Cl2 consumption ratio. The formation of total THM (TTHM) was found to decrease with increasing ammonia concentration but to increase with bromide concentration and pH value. The n(Br) trends were significantly affected by the presence of bromide concentration. The effects on the molar yields of THMs were more strongly influenced by bromide concentration and dissolved organic carbon (DOC) concentration than pH value and natural organic matter (NOM) source. High Br/DOC and Br/Cl2 favor the formation of THMs-Br over chlorinated THMs (THMs-Cl). The experimental data including the main parameters such as bromide, DOC, ammonia, pH and reaction time were used for developing the predictive model for THMs-Br.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buffle, M.O., Galli, S., Gunten, U.V., 2004. Enhanced bromate control during ozonation: the chlorine-ammonia process. Environmental Science & Technology, 38(19):5187–5195. [doi:10.1021/es0352146]

    Article  Google Scholar 

  • Chang, E.E., Lin, Y.P., Chiang, P.C., 2001. Effects of bromide on the formation of THMs and HAAs. Chemosphere, 43(8):1029–1034. [doi:10.1016/S0045-6535(00)00210-1]

    Article  Google Scholar 

  • Chang, E.E., Chiang, P.C., Liu, H.T., Li, I.S., Chao, S.H., 2008. Effect of bromide and ammonia on the formation of ozonation and chlorination by-products. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(2):79–85. [doi:10.1061/(ASCE)1090-025X(2008)12:2(79)]

    Article  Google Scholar 

  • Chellam, S., Krasner, S.W., 2001. Disinfection byproduct relationships and speciation in chlorinated nanofiltered waters. Environmental Science & Technology, 35(19): 3988–3999. [doi:10.1021/es010775n]

    Article  Google Scholar 

  • Chowdhury, S., Champagne, P., McLellan, P.J., 2009. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment, 407(14):4189–4206. [doi:10.1016/j.scitotenv.2009.04.006]

    Article  Google Scholar 

  • Duong, H.A., Berg, M., Hoang, M.H., Pham, H.V., Gallard, H., Gigerb, W., Gunten, U., 2003. Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water Research, 37(13):3242–3252. [doi:10.1016/S0043-1354 (03)00138-6]

    Article  Google Scholar 

  • Gould, J., Fitchhorn, L., Urheim, E., 1981. Formation of brominated trihalomethanes: extent and kinetics. Water Chlorination: Environmental Impacts and Health Effects, 4:297–310.

    Google Scholar 

  • Heller-Grossman, L., Manka, J., limoni-Relis, B., Reuhun, M., 1993. Formation and distribution of haloacetic acids, THM and TOX in chlorination of bromide-rich lake water. Water Research, 27(8):1323–1331. [doi:10.1016/0043-1354(93)90219-8]

    Article  Google Scholar 

  • Hua, G., Reckhow, D., 2007. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology, 41(9):3309–3315. [doi:10.1021/es062178c]

    Article  Google Scholar 

  • Hua, G., Reckhow, D., Kim, J., 2006. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environmental Science & Technology, 40(9):3050–3056. [doi:10.1021/es062187c]

    Article  Google Scholar 

  • Huang, W.J., Chen, L.Y., Peng, H.S., 2004. Effect of NOM characteristics on brominated organics formation by ozonation. Environment International, 29(8):1049–1055. [doi:10.1016/S0160-4120(03)00099-0]

    Article  Google Scholar 

  • Hutton, P., Chung, F., 1994. Bromine distribution factors in THM formation. Journal of Water Resources Planning and Management, 120(1):1–16. [doi:10.1061/(ASCE) 0733-9496(1994)120:1(1)]

    Article  Google Scholar 

  • Ichihashi, K., Teranishi, K., Ichimura, A., 1999. Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ions. Water Research, 33(2):477–483. [doi:10.1016/s0043-1354(98)00227-9]

    Article  Google Scholar 

  • Karpel Vel Leitner, N., Vessella, J., Doré, M., Legube, B., 1998. Chlorination and formation of organoiodinated compounds: the important role of ammonia. Environmental Science & Technology, 32(11):1680–1685. [doi:10.1021/es9706662]

    Article  Google Scholar 

  • Kumar, K., Margerum, D.W., 1987. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorganic Chemistry, 26(16):2706–2711. [doi:10.1021/ic00263a030]

    Article  Google Scholar 

  • Lu, J., Zhang, T., Ma, J., Chen, Z., 2009. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials, 162(1):140–145. [doi:10.1016/j.jhazmat.2008.05.058]

    Article  Google Scholar 

  • Obolensky, A., Singer, P.C., 2005. Halogen substitution patterns among disinfection byproducts in the information collection rule database. Environmental Science & Technology, 39(8):2719–2730. [doi:10.1021/es0489339]

    Article  Google Scholar 

  • Panyapinyopol, B., Kanokkantapong, V., Maraba, T.F., Wattanachira, S., Pavasant, P., 2005. Kinetics of trihalomethane formation from organic contaminants in raw water from the Bangkhen water treatment plant. Journal of Environmental Science and Health, 40(8):1453–1555. [doi:10.1081/ESE-00060617]

    Google Scholar 

  • Richardson, S.D., 2003. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry, 22(10):666–684. [doi:10.1016/S0165-9936(03)01003-3]

    Article  Google Scholar 

  • Sadiq, R., Rodriguez, M.J., 2004. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment, 321(1–3):21–46. [doi:10.1016/j.scitotenv.2003.05.001]

    Article  Google Scholar 

  • Singer, P.C., 1999. Humic substances as precursors for potentially harmful disinfection by-products. Water Science & Technology, 40(9):25–30. [doi:10.1016/S0273-1223(99) 00636-8]

    Article  Google Scholar 

  • Sketchell, J., Peterson, H.G., Christofi, N., 1995. Disinfection by-product formation after biologically assisted GAC treatment of water supplies with different bromide and DOC content. Water Research, 29(12):2635–2642. [doi:10.1016/0043-1354(95)00130-D]

    Article  Google Scholar 

  • Sohn, J., Amy, G., Yoon, Y., 2006. Bromide ion incorporation into brominated disinfection by-products. Water, Air, and Soil Pollution, 174(1–4):265–277. [doi:10.1007/s11270-006-9104-3]

    Article  Google Scholar 

  • Sorlini, S., Collivignarelli, C., 2005. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. Desalination, 176(1–3):103–111. [doi:10.1016/j.desal.2004.10. 022]

    Article  Google Scholar 

  • Sun, Y.X., Wu, Q.Y., Hu, H.Y., Tian, J., 2009. Effect of bromide on the formation of disinfection by-products during wastewater chlorination. Water Research, 43(9):2391–2398. [doi:10.1016/j.watres.2009.02.033]

    Article  Google Scholar 

  • Symons, J.M., Krasner, S.W., Simms, L.A., Sclimenti, M., 1993. Measurement of THM and precursor concentrations revisited: the effect of bromide ion. American Water Works Association, 85:51–62.

    Google Scholar 

  • Uyak, V., Toroz, I., 2007. Investigation of bromide ion effects on disinfection by-product formation and speciation in an Istanbul water supply. Journal of Hazardous Materials, 149(2):445–451. [doi:10.1016/j.jhazmat.2007.04.017]

    Article  Google Scholar 

  • Xue, S., Zhao, Q.L., Wei, L.L., Jia, T., 2008. Effect of bromide ion isolated fractions of dissolved organic matter in secondary effluent during chlorination. Journal of Hazardous Materials, 157(1):25–33. [doi:10.1016/j.jhazmat. 2007.12.071]

    Article  Google Scholar 

  • Yang, X., Shang, C., 2004. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide. Environmental Science & Technology, 38(19):4995–5001. [doi:10.1021/es049589g]

    Article  Google Scholar 

  • Yoon, J., Choi, Y., Cho, S., Lee, D., 2003. Low trihalomethane formation in Korean drinking water. Science of the Total Environment, 302(1–3):157–166. [doi:10.1016/S0048-9697(01)01097-X]

    Article  Google Scholar 

  • Zhang, X., Echigo, S., Lei, H., Smitha, M.E., Minear, R.A., Talley, J.W., 2005. Effects of temperature and chemical addition on the formation of bromoorganic DBPs during ozonation. Water Research, 39(2–3):423–435. [doi:10.1016/j.watres.2004.10.007]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-mei Liu.

Additional information

Project supported by the National Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z311), the National Natural Science Foundation of China (No. 50808052)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, Dm., Zhao, Zw. et al. Factors influencing the formation of chlorination brominated trihalomethanes in drinking water. J. Zhejiang Univ. Sci. A 11, 143–150 (2010). https://doi.org/10.1631/jzus.A0900343

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900343

Key words

CLC number

Navigation