Skip to main content
Log in

Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart

  • Biomedical Science
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbit were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (TnI) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group’s mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bittira, B., Kuang, J.Q., 2002. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg, 74(4):1154–1160.

    Article  Google Scholar 

  • Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., Chopp, M., 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32:1005–1011.

    Article  Google Scholar 

  • Cohen, M.V., Yang, X.M., Downey, J.M., 1999. Smaller infarct after preconditioning does not predict extent of early functional improvement of reperfused heart. Am J Physiol, 277:1754–1761.

    Google Scholar 

  • Donald, O., Jan, K., Stefano, C., 2001. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci, 98(18): 10344–10349.

    Article  Google Scholar 

  • Federico, Q., Konrad, U., 2002. Chimerism of the transplanted heart. N Engl J Med, 346:5–15.

    Article  Google Scholar 

  • Lang, R., Gomes, A.V., Zhao, J., Housmans, P.R., Miller, T., Potter, J.D., 2002. Functional analysis of a troponin I (R145G) mutation associated with familial hypertrophic cardiomyopathy. J Biol Chem, 277(14):11670–11678.

    Article  Google Scholar 

  • Le, B.K., Tammik, L., Sundberg, B., Haynesworth, S.E., Ringden, O., 2003. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57(1):11–17.

    Article  Google Scholar 

  • Lu, D., Mahmood, A., Wang, L., Li, Y., Lu, M., Chopp, M., 2001. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport, 12:559–563.

    Article  Google Scholar 

  • MacFarlane, N.G., Darnley, G.M., Smith, G.L., 2000. Cellular basis for contractile dysfunction in the diaphragm from a rabbit infarct model of heart failure. Am J Physiol Cell Physiol, 278:c739-c746.

    Google Scholar 

  • Mann, D.L., 1999. Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100:999–1008.

    Article  Google Scholar 

  • McGinley, J.N., Knott, K.K., Thompson, H.J., 2000. Effect of fixation and epitope retrieval on BrdUrd indices in mammary carcinomas. J Histochem Cytochem, 48:355–362.

    Article  Google Scholar 

  • Min, J.Y., Yang, Y., Converso, K.L., Liu, L., Huang, Q., Morgan, J.P., Xiao, Y.F., 2002. Transplantation of embryonic stem cell improves cardiac function in postinfarcted rats. J Appl Physiol, 92:288–296.

    Article  Google Scholar 

  • Ohno, M., Takemura, G., Ohno, A., Misao, J., Hayakawa, Y., Minatoguchi, S., Fujiwara, T., Fujiwara, H., 1998. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA Fragmentation. Ciculation, 98:1422–1430.

    Article  Google Scholar 

  • Pennock, G.D., Yun, D.D., Agarwal, P.G., 1997. Echocardiographic changes after myocardial infarction in a model of left ventricular diastolic dysfunction. Am J Physiol, 273:2018–2029.

    Google Scholar 

  • Peter, J.Q., Pamela, S.B., 1998. Stem cell homing: rolling, crawling, and nesting. Proc. Natl. Acad. Sci, 95:15155–15157.

    Article  Google Scholar 

  • Pittenger, F., Mackay, A., Beck, S., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284:143–147.

    Article  Google Scholar 

  • Podesser, B., Wollenek, G., Seitelberger, R., Siegel, H., Wolner, E., Firbas, W., Tschabitscher, M., 1997. Epicardial branches of the coronary arteries and their distribution in the rabbit heart: The rabbit heart as a model of regional ischemia. The Anatomical Record, 247:521–527.

    Article  Google Scholar 

  • Schmitt, B., Ringe, J., Haupl, T., Notter, M., Manz, R., Burnester, G.R., Sittinger, M., Kaps, C., 2003. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation, 71(9–10):567–577.

    Article  Google Scholar 

  • Shinji, M., Fukuda, K., Shunichirou, M., 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinica Investigation, 103(3):697–705.

    Google Scholar 

  • Tomita, S., Li, R.K., Weisel, R.D., 1999. Autologous transplantation of bone marrow cells improve damaged heart function. Circulation, 100(19):247–256.

    Google Scholar 

  • Wang, J.F., Wu, Y.F., Harrintong, J., McNiece, I.K., 2004. Ex-vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells. J Zhejiang Univ SCIENCE, 5(2):157–163.

    Article  Google Scholar 

  • Wasan, K.M., Sivak, O., 2003. Modifications in lipoprotein surface charge alter cyclosporine A association with low-density lipoproteins. Pharm Res, 20(1):126–129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Projects (No. 30240075) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Ja., Li, Cl., Fan, Yq. et al. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart. J. Zheijang Univ.-Sci. 5, 1279–1285 (2004). https://doi.org/10.1631/jzus.2004.1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2004.1279

Key words

Document code

CLC number

Navigation