Skip to main content
Log in

Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related risks such as coronary heart disease, stroke, and kidney failure. Posture of the participant plays a vital role in accurate measurement of BP. Guidelines on measurement of BP contain recommendations on the position of the back of the participants by advising that they should sit with supported back to avoid spuriously high readings. In this work, principal component analysis (PCA) is fused with forward stepwise regression (SWR), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and the least squares support vector machine (LS-SVM) model for the prediction of BP reactivity to an unsupported back in normotensive and hypertensive participants. PCA is used to remove multi-collinearity among anthropometric predictor variables and to select a subset of components, termed ‘principal components’ (PCs), from the original dataset. The selected PCs are fed into the proposed models for modeling and testing. The evaluation of the performance of the constructed models, using appropriate statistical indices, shows clearly that a PCA-based LS-SVM (PCA-LS-SVM) model is a promising approach for the prediction of BP reactivity in comparison to others. This assessment demonstrates the importance and advantages posed by hybrid models for the prediction of variables in biomedical research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba, R., Koketsu, M., Nagashima, M., et al., 2007. Adolescent obesity adversely affects blood pressure and resting heart rate. Circ. J., 71(5):722–726. [doi:10.1253/circj.71.722]

    Article  Google Scholar 

  • Barbé, K., Kurylyak, Y., Lamonaca, F., 2014. Logistic ordinal regression for the calibration of oscillometric blood pressure monitors. Biomed. Signal Process., 11:89–96. [doi:10.1016/j.bspc.2014.01.012]

    Article  Google Scholar 

  • Basheer, I.A., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods, 43(1):3–31. [doi:10.1016/S0167-7012(00)00201-3]

    Article  Google Scholar 

  • British Hypertension Society, 1998. Blood Pressure Measurement (CD-ROM). BMJ Books, London, UK.

    Google Scholar 

  • Card, D.H., Peterson, D.L., Matson, P.A., 1988. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens. Environ., 26(2): 123–147. [doi:10.1016/0034-4257(88)90092-2]

    Article  Google Scholar 

  • Chiatti, C., Bustacchini, S., Furneri, G., et al., 2012. The economic burden of inappropriate drug prescribing, lack of adherence and compliance, adverse drug events in older people. Drug Saf., 35(1):73–87. [doi:10.1007/BF03319105]

    Article  Google Scholar 

  • Cushman, W.C., Cooper, K.M., Horne, R.A., et al., 1990. Effect of back support and stethoscope head on seated blood pressure determinations. Am. J. Hypertens., 3(3): 240–241.

    Google Scholar 

  • de Hoog, M., van Eijsden, M., Stronks, K., et al., 2012. Association between body size and blood pressure in children from different ethnic origins. Cardiovasc. Diabetol., 11:136.1–136.10. [doi:10.1186/1475-2840-11-136]

    Google Scholar 

  • Forouzanfar, M., Dajani, H.R., Groza, V.Z., et al., 2011. Feature-based neural network approach for oscillometric blood pressure estimation. IEEE Trans. Instrum. Meas., 60(8):2786–2796. [doi:10.1109/TIM.2011.2123210]

    Article  Google Scholar 

  • Genc, S., 2011. Prediction of mean arterial blood pressure with linear stochastic models. Proc. IEEE Annual Int. Conf. on Engineering in Medicine and Biology Society, p.712–715. [doi:10.1109/IEMBS.2011.6090161]

    Google Scholar 

  • Golino, H.F., Amaral, L.S.B., Duarte, S.F.P., et al., 2014. Predicting increased blood pressure using machine learning. J. Obes., 2014:637635.1–637635.12. [doi:10.1155/2014/637635]

    Article  Google Scholar 

  • Gujarati, D.N., 1995. Basic Econometrics. McGraw-Hill, New York, USA.

    Google Scholar 

  • Hagan, M.T., Menhaj, M.B., 1994. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neur. Netw., 5(6):989–993. [doi:10.1109/72.329697]

    Article  Google Scholar 

  • Haynes, R.B., Sackett, D.L., Taylor, D.W., et al., 1978. Increased absenteeism from work after detection and labeling of hypertensive patients. New Engl. J. Med., 299(14):741–744. [doi:10.1056/NEJM197810052991403]

    Article  Google Scholar 

  • Huang, H.H., Xu, T., Yang, J., 2014. Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension. BMC Proc., 8(Suppl. 1):S96.1–S96.5. [doi:10.1186/1753-6561-8-S1-S96]

    MathSciNet  Google Scholar 

  • Inoue, M., Minami, M., Yano, E., 2014. Body mass index, blood pressure, and glucose and lipid metabolism among permanent and fixed-term workers in the manufacturing industry: a cross-sectional study. BMC Pub. Health, 14:207.1–207.8. [doi:10.1186/1471-2458-14-207]

    Article  Google Scholar 

  • Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23(3): 665–685. [doi:10.1109/21.256541]

    Article  Google Scholar 

  • Jolliffe, I.T., 2002. Principal Component Analysis. Springer-Verlag, New York, USA.

    MATH  Google Scholar 

  • Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educ. Psychol. Meas., 20:141–151. [doi:10.1177/001316446002000116]

    Article  Google Scholar 

  • Khan, S.M.U., Manzoor, J.S., Lee, S.U.J., 2014. Predicting student blood pressure by support vector machine using Facebook. Proc. IEEE World Congress on Services, p.486–492. [doi:10.1109/SERVICES.2014.92]

    Google Scholar 

  • Kolade, O.O., O’Moore-Sullivan, T.M., Stowasser, M., et al., 2012. Arterial stiffness, central blood pressure and body size in health and disease. Int. J. Obes., 36(1):93–99. [doi:10.1038/ijo.2011.79]

    Article  Google Scholar 

  • Kurylyak, Y., Lamonaca, F., Grimaldi, D., 2013. A neural network-based method for continuous blood pressure estimation from a PPG signal. Proc. IEEE Int. Conf. on Instrumentation and Measurement Technology, p.280–283. [doi:10.1109/I2MTC.2013.6555424]

    Google Scholar 

  • Lynn, S., Ringwood, J., Ragnoli, E., et al., 2009. Virtual metrology for plasma etch using tool variables. Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conf., p.143–148. [doi:10.1109/ASMC.2009.5155972]

    Google Scholar 

  • Monte-Moreno, E., 2011. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med., 53(2):127–138. [doi:10.1016/j.artmed.2011.05.001]

    Article  Google Scholar 

  • Moser, D.C., Giuliano, I.C.B., Titski, A.C.K., et al., 2013. Anthropometric measures and blood pressure in school children. J. Pediatr., 89(3):243–249. [doi:10.1016/j.jped.2012.11.006]

    Article  Google Scholar 

  • Nauck, D., 1997. Neuro-Fuzzy Systems. John Wiley & Sons, Inc., New York, USA.

    Google Scholar 

  • Noori, R., Khakpour, A., Omidvar, B., et al., 2010. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistics. Expert Syst. Appl., 37(8):5856–5862. [doi:10.1016/j.cswa.2010.02.020]

    Article  Google Scholar 

  • O’Brien, E., Asmar, R., Beilin, L., et al., 2003. European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J. Hypertens., 21(5):821–848.

    Article  Google Scholar 

  • Pickering, T.G., Hall, J.E., Appel, L.J., et al., 2005. Recommendations for blood pressure measurement in humans and experimental animals. Part 1: Blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension, 45:142–161. [doi:10.1161/01.HYP.0000150859.47929.8e]

    Article  Google Scholar 

  • Schölkopf, B., Smola, A.J., 2002. Learning with Kernels. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Sharma, S., 1995. Applied Multivariate Techniques. John Wiley & Sons, Inc., Canada.

    Google Scholar 

  • Smith, K.W., Sasaki, M.S., 1979. Decreasing multi-collinearity: a method for models with multiplicative functions. Sociol. Methods Res., 8(1):35–56. [doi:10.1177/004912417900800102]

    Article  Google Scholar 

  • Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neur. Process. Lett., 9(3): 293–300. [doi:10.1023/A:1018628609742]

    Article  MathSciNet  Google Scholar 

  • Tobias, S., Carlson, J.E., 1969. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivar. Behav. Res., 4(3):375–377. [doi:10.1207/s15327906mbr 0403_8]

    Article  Google Scholar 

  • Williams, B., Brown, T., Onsman, A., 2010. Exploratory factor analysis: a five-step guide for novices. Aust. J. Paramed., 8(3):1.1–1.13. [doi:10.1023/A:1011131521933]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmanik Kaur.

Additional information

ORCID: Gurmanik KAUR, http://orcid.org/0000-0002-6384-4396

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Arora, A.S. & Jain, V.K. Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics. Frontiers Inf Technol Electronic Eng 16, 474–485 (2015). https://doi.org/10.1631/FITEE.1400295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400295

Key words

CLC number

Navigation