Skip to main content
Log in

Face recognition based on subset selection via metric learning on manifold

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

With the development of face recognition using sparse representation based classification (SRC), many relevant methods have been proposed and investigated. However, when the dictionary is large and the representation is sparse, only a small proportion of the elements contributes to the l 1-minimization. Under this observation, several approaches have been developed to carry out an efficient element selection procedure before SRC. In this paper, we employ a metric learning approach which helps find the active elements correctly by taking into account the interclass/intraclass relationship and manifold structure of face images. After the metric has been learned, a neighborhood graph is constructed in the projected space. A fast marching algorithm is used to rapidly select the subset from the graph, and SRC is implemented for classification. Experimental results show that our method achieves promising performance and significant efficiency enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arandjelovic, O., Shakhnarovich, G., Fisher, J., et al., 2005. Face recognition with image sets using manifold density divergence. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.581–588. [doi:10.1109/CVPR.2005.151]

    Google Scholar 

  • Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS, 14:585–591.

    Google Scholar 

  • Candès, E.J., 2008. The restricted isometry property and its implications for compressed sensing. Compt. Rend. Math., 346(9-10):589–592. [doi:10.1016/j.crma. 2008.03.014]

    Article  MATH  Google Scholar 

  • Candès, E.J., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat., 35(6):2313–2351. [doi:10.1214/009053606000001523]

    Article  MATH  Google Scholar 

  • Deng, W.H., Hu, J.N., Guo, J., 2012. Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Patt. Anal. Mach. Intell., 34(9):1864–1870. [doi:10.1109/TPAMI.2012.30]

    Article  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., et al., 2004. Least angle regression. Ann. Stat., 32(2):407–499. [doi:10.1214/009053604000000067]

    Article  MathSciNet  MATH  Google Scholar 

  • Georghiades, A.S., Belhumeur, P.N., Kriegman, D., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6):643–660. [doi:10.1109/34.927464]

    Article  Google Scholar 

  • He, R., Zheng, W.S., Hu, B.G., 2011. Maximum correntropy criterion for robust face recognition. IEEE Trans. Patt. Anal. Mach. Intell., 33(8):1561–1576. [doi:10.1109/TPAMI.2010.220]

    Article  Google Scholar 

  • He, R., Zheng, W.S., Hu, B.G., et al., 2013. Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. Neur. Netw. Learn. Syst., 24(1):35–46. [doi:10.1109/TNNLS.2012.2226471]

    Article  Google Scholar 

  • He, R., Zheng, W.S., Tan, T.N., et al., 2014. Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 36(2):261–275. [doi:10.1109/TPAMI.2013.102]

    Article  Google Scholar 

  • Jiang, Z.L., Lin, Z., Davis, L.S., 2011. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1697–1704. [doi:10.1109/CVPR.2011.5995354]

    Google Scholar 

  • Lai, Z.H., Li, Y.J., Wan, M.H., et al., 2013. Local sparse representation projections for face recognition. Neur. Comput. Appl., 23(7):2231–2239. [doi:10.1007/s00521-012-1174-0]

    Article  Google Scholar 

  • Liao, S.C., Jain, A.K., Li, S.Z., 2013. Partial face recognition: alignment-free approach. IEEE Trans. Patt. Anal. Mach. Intell., 35(5):1193–1205. [doi:10.1109/TPAMI.2012.191]

    Article  Google Scholar 

  • Lu, J.W., Tan, Y.P., Wang, G., 2013. Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Patt. Anal. Mach. Intell., 35(1):39–51. [doi:10.1109/TPAMI. 2012.70]

    Article  Google Scholar 

  • Martínez, A., Benavente, B., 1998. The AR Face Database. CVC Technical Report 24.

    Google Scholar 

  • Ortiz, E.G., Becker, B.C., 2014. Face recognition for webscale datasets. Comput. Vis. Image Understand., 118:153–170. [doi:10.1016/j.cviu.2013.09.004]

    Article  Google Scholar 

  • Patel, V.M., Wu, T., Biswas, S., et al., 2012. Dictionarybased face recognition under variable lighting and pose. IEEE Trans. Inform. Forens. Secur., 7(3):954–965. [doi:10.1109/TIFS.2012.2189205]

    Article  Google Scholar 

  • Phillips, P.J., Wechsler, H., Huang, J., et al., 1998. The FERET database and evaluation procedure for facerecognition algorithms. Image Vis. Comput., 16(5): 295–306. [doi:10.1016/S0262-8856(97)00070-X]

    Article  Google Scholar 

  • Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326. [doi:10.1126/science.290.5500. 2323]

    Article  Google Scholar 

  • Sethian, J.A., 1999. Fast marching methods. SIAM Rev., 41(2):199–235. [doi:10.1137/S0036144598347059]

    Article  MathSciNet  MATH  Google Scholar 

  • Seung, H.S., Lee, D.D., 2000. The manifold ways of perception. Science, 290(5500):2268–2269. [doi:10.1126/science.290.5500.2268]

    Article  Google Scholar 

  • Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323. [doi:10.1126/science.290.5500.2319]

    Article  Google Scholar 

  • Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267–288.

    MathSciNet  MATH  Google Scholar 

  • Vandenberghe, L., Boyd, S., 1996. Semidefinite programming. SIAM Rev., 38(1):49–95. [doi:10.1137/1038003]

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, A., Wright, J., Ganesh, A., et al., 2012. Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 34(2):372–386. [doi:10.1109/TPAMI.2011.112]

    Article  Google Scholar 

  • Wang, L.F., Wu, H.Y., Pan, C.H., 2015. Manifold regularized local sparse representation for face recognition. IEEE Trans. Circ. Syst. Video Technol., 25(4): 651–659. [doi:10.1109/TCSVT.2014.2335851]

    Article  Google Scholar 

  • Wang, R.P., Shan, S.G., Chen, X.L., et al., 2008. Manifoldmanifold distance with application to face recognition based on image set. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587719]

    Google Scholar 

  • Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244. [doi:10.1145/1577069.1577078]

    MATH  Google Scholar 

  • Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210–227. [doi:10.1109/TPAMI.2008.79]

    Article  Google Scholar 

  • Xu, Y., Zuo, W.M., Fan, Z.Z., 2012. Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing, 79:125–131. [doi:10.1016/j.neucom.2011.10.013]

    Article  Google Scholar 

  • Xu, Y., Zhu, Q., Fan, Z.Z., et al., 2013. Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inform. Sci., 238:138–148. [doi:10.1016/j.ins.2013.02.051]

    Article  MathSciNet  Google Scholar 

  • Yang, M., Zhang, L., 2010. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. Proc. 11th European Conf. on Computer Vision, p.448–461. [doi:10.1007/978-3-642-15567-3_33]

    Google Scholar 

  • Yang, M., Zhang, D., Yang, J., 2011. Robust sparse coding for face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.625–632. [doi:10.1109/CVPR.2011.5995393]

    Google Scholar 

  • Yu, Z.P., Wu, Z.D., Zhang, J.W., 2013. An illumination robust algorithm for face recognition via SRC and Gradientfaces. Proc. 2nd Int. Conf. on Innovative Computing and Cloud Computing, p.36–40. [doi:10.1145/2556871.2556880]

    Google Scholar 

  • Zhang, D., Yang, M., Feng, X.C., 2011. Sparse representation or collaborative representation: which helps face recognition? Proc. IEEE Int. Conf. on Computer Vision, p.471–478. [doi:10.1109/ICCV.2011.6126277]

    Google Scholar 

  • Zhang, Q., Li, B.X., 2010. Discriminative K-SVD for dictionary learning in face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2691–2698. [doi:10.1109/CVPR.2010.5539989]

    Google Scholar 

  • Zhou, T.Y., Tao, D.C., Wu, X.D., 2011. Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Discov., 22(3):340–371. [doi:10.1007/s10618-010-0182-x]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Chen.

Additional information

Project supported by the Natural Science Foundation of Liaoning Province, China (No. 201202162)

ORCID: Shuang CHEN, http://orcid.org/0000-0001-7441-4749

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Chen, S., Zhao, Jy. et al. Face recognition based on subset selection via metric learning on manifold. Frontiers Inf Technol Electronic Eng 16, 1046–1058 (2015). https://doi.org/10.1631/FITEE.1500085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500085

Keywords

CLC number

Navigation