Skip to main content
Log in

Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.00% of the total motifs. GAA was the most common motif among tri-nucleotide repeats, with a frequency of 18.18%. Polymorphic analysis identified a total of 71 alleles, with an average of 3.23 per locus. The polymorphism information content (PIC) values ranged from 0.144 to 0.630, with a mean of 0.386. Observed heterozygosity (H o) values varied from 0.0196 to 1.0000, with an average of 0.6092, while the expected heterozygosity (H e) values ranged from 0.1502 to 0.6840, with a mean value of 0.4616. Principal coordinate analysis and phylogenetic tree analysis indicated that the accessions could be assigned to different groups based to a large extent on their geographic distribution, and most accessions from China were clustered into the same groups. These results suggest that Chinese vegetable soybean accessions have a narrow genetic base. The results of this study indicate that EST-SSRs from grain soybean have high transferability to vegetable soybean, and that these new markers would be helpful in taxonomy, molecular breeding, and comparative mapping studies of vegetable soybean in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1):181–186. [doi:10. 1139/g93-024]

    Article  PubMed  CAS  Google Scholar 

  • Arikit, S., Yoshihashi, T., Wanchana, S., Tanya, P., Juwattanasomran, R., Srinives, P., Vanavichit, A., 2011. A PCR-based marker for a locus conferring aroma in vegetable soybean (Glycine max L.). Theor. Appl. Genet., 122(2):311–316. [doi:10.1007/s00122-010-1446-y]

    Article  PubMed  Google Scholar 

  • Choudhary, S., Sethy, N.K., Shokeen, B., Bhatia, S., 2009. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor. Appl. Genet., 118(3):591–608. [doi:10.1007/s00122-008-0923-z]

    Article  PubMed  CAS  Google Scholar 

  • Cornelious, B.K., Sneller, C.H., 2002. Yield and molecular diversity of soybean lines derived from crosses of northern and southern elite parents. Crop Sci., 42(2):642–647. [doi:10.2135/cropsci2002.0642]

    Article  Google Scholar 

  • Gong, Y.M., Xu, S.C., Mao, W.H., Hu, Q.Z., Zhang, G.W., Ding, J., Li, Y.D., 2010a. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(9):702–707. [doi:10.1631/jzus.B1000004]

    Article  CAS  Google Scholar 

  • Gong, Y.M., Xu, S.C., Mao, W.H., Hu, Q.Z., Zhang, G.W., Ding, J., Li, Z.Y., 2010b. Generation and characterization of 11 novel EST derived microsatellites from Vicia faba (Fabaceae). Am. J. Bot., 97(7):69–71. [doi:10.3732/ajb. 1000166]

    Article  Google Scholar 

  • Gong, Y.M., Xu, S.H., Mao, W.H., Li, Z.Y., Hu, Q.Z., Zhang, G.W., Ding, J., 2011. Genetic diversity analysis of faba Bean (Vicia faba L.) based on EST-SSR markers. Agric. Sci. China, 10(6):838–844. [doi:10.1016/S1671-2927 (11)60069-2]

    Article  CAS  Google Scholar 

  • Hisano, H., Sato, S., Isobe, S., Sasamoto, S., Wada, T., Matsuno, A., Fujishiro, T., Yamada, M., Nakayama, S., Nakamura, Y., et al., 2007. Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res., 14(6):271–281. [doi:10.1093/dnares/dsm025]

    Article  PubMed  CAS  Google Scholar 

  • Keatinge, J.D.H., Easdown, W.J., Yang, R.Y., Chadha, M.L., Shanmugasundaram, S., 2011. Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica, 180(1):129–141. [doi:10.1007/s10681-011-0401-6]

    Article  Google Scholar 

  • Kuroda, Y., Tomooka, N., Kaga, A., Wanigadeva, S.M.S.W., Vaughan, D.A., 2009. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet. Resour. Crop Evol., 56(8):1045–1055. [doi:10. 1007/s10722-009-9425-3]

    Article  CAS  Google Scholar 

  • Li, A.Q., Zhao, C.Z., Wang, X.J., Liu, Z.J., Zhang, L.F., Song, G.Q., Yin, J., Li, C.S., Xia, H., Bi, Y.P., 2010. Identification of SSR markers using soybean (Glycine max) ESTs from globular stageembryos. Electron. J. Biotechnol., 13(5):1–11. [doi:10.2225/vol13-issue5-fulltext-5]

    Article  Google Scholar 

  • Li, G., Ra, W.H., Park, J.W., Kwon, S.W., Lee, J.H., Park, C.B., Park, Y.J., 2011. Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. Biochem. Syst. Ecol., 39(4–6):241–252. [doi:10.1016/j.bse.2011.08.012]

    Article  CAS  Google Scholar 

  • Li, Y.H., Guan, R.X., Liu, Z.X., Ma, Y.S., Wang, L.X., Li, L.H., Lin, F.Y., Luan, W.J., Chen, P.Y., Yan, Z., et al., 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet., 117(6):857–871. [doi:10.1007/s00122-008-0825-0]

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.L., Li, Y.H., Zhou, G.A., Uzokwe, N., Chang, R.Z., Chen, S.Y., Qiu, L.J., 2010. Development of soybean EST-SSR markers and their use to assess genetic diversity in the Subgenus soja. Agric. Sci. China, 9(10):1423–1429. [doi:10.1016/S1671-2927(09)60233-9]

    Article  CAS  Google Scholar 

  • Lu, Y.B., Yang, Y.W., Wu, P.D., 2006. Separation of phosphatidylcholine from soybean phospholipids by simulated moving bed. J. Zhejiang Univ.-Sci. B, 7(7):559–564. [doi:10.1631/jzus.2006.B0559]

    Article  PubMed  CAS  Google Scholar 

  • Metzgar, D., Bytof, J., Wills, C., 2000. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res., 10(1):72–80.

    PubMed  CAS  Google Scholar 

  • Mimura, M., Coyne, C.J., Bambuck, M.W., Lumpkin, T.A., 2007. SSR diversity of vegetable soybean [Glycine max (L.) Merr.]. Genet. Resour. Crop Evol., 54(3):497–508. [doi:10.1007/s10722-006-0006-4]

    Article  CAS  Google Scholar 

  • Moe, K.T., Zhao, W.G., Song, H.S., Kim, Y.H., Chung, J.W., Cho, Y.I., Park, P.H., Park, H.S., Chae, S.C., Park, Y.J., 2010. Development of SSR markers to study diversity in the genus Cymbidium. Biochem. Syst. Ecol., 38(4): 585–594. [doi:10.1016/j.bse.2010.07.004]

    Article  CAS  Google Scholar 

  • Morgante, M., Hanafey, M., Powell, W., 2002. Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nat. Genet., 30(2):194–200. [doi:10.1038/ng822]

    Article  PubMed  CAS  Google Scholar 

  • Roy, J.K., Lakshmikumaran, M.S., Balyan, H.S., Gupta, P.K., 2004. AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochem. Genet., 42(1/2):43–59. [doi:10.1023/B:BIGI.0000012143.48298.71]

    Article  PubMed  CAS  Google Scholar 

  • Saldivar, X., Wang, Y.J., Chen, P., Mauromoustakos, A., 2010. Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean. LWT Food Sci. Technol., 43(9):1368–1372. [doi:10.1016/j.lwt.2010.04.017]

    Article  CAS  Google Scholar 

  • Shultz, J.L., Kazi, S., Bashir, R., Afzal, J.A., Lightfoot, D.A., 2007. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor. Appl. Genet., 114(6): 1081–1090. [doi:10.1007/s00122-007-0501-9]

    Article  PubMed  CAS  Google Scholar 

  • Song, Q.J., Marek, L.F., Shoemaker, R.C., Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E., Cregan, P.B., 2004. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet., 109(1):122–128. [doi:10.1007/s00122-004-1602-3]

    Article  PubMed  CAS  Google Scholar 

  • Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T., McCouch, S.R., 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet., 100(5):697–712. [doi:10.1007/s001220051342]

    Article  CAS  Google Scholar 

  • Varshney, R.K., Graner, A., Sorrells, M.E., 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol., 23(1):48–55. [doi:10.1016/j.tibtech. 2004.11.005]

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.B., Mulock, B., Guus, B., McCallum, B.T., 2010. Development of EST-derived simple sequence repeat markers for wheat leaf rust fungus, Puccinia triticina Eriks. Can. J. Plant Pathol., 32(1):98–107. [doi:10.1080/07060661003594133]

    Article  Google Scholar 

  • Wen, Z.X., Ding, Y.L., Zhao, T.J., Gai, J.Y., 2009. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor. Appl. Genet., 119(2):371–381. [doi:10.1007/s00122-009-1045-y]

    Article  PubMed  CAS  Google Scholar 

  • Xia, Z.J., Tsubokura, Y., Hoshi, M., Hanawa, M., Yano, C., Okamura, K., Ahmed, T., Anai, T., Watanabe, S., Hayashi, M., et al., 2007. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res., 14(6): 257–269. [doi:10.1093/dnares/dsm027]

    Article  PubMed  CAS  Google Scholar 

  • Yinbo, G., Peoples, M.B., Rerkasem, B., 1997. The effect of N fertilizer strategy on N2 fixation, growth and yield of vegetable soybean. Field Crop Res., 51(3):221–229. [doi:10.1016/S0378-4290(96)03464-8]

    Article  Google Scholar 

  • Young, G., Mebrahtu, T., Johnson, J., 2000. Acceptability of green soybeans as a vegetable entity. Plant Food Hum. Nutr., 55(4):323–333. [doi:10.1023/A:1008164925103]

    Article  CAS  Google Scholar 

  • Zhou, X., Carter, J.T.E., Cui, Z., Miyazaki, S., Burton, J.W., 2002. Genetic diversity patterns in Japanese soybean cultivars based on coefficient of parentage. Crop Sci., 42(4):1331–1342. [doi:10.2135/cropsci2002.1331]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-ming Gong.

Additional information

The two authors contributed equally to this work

Project supported by the National Natural Science Foundation of China (Nos. 31101538, 31000942, and 31000676), the Grand Science and Technology Special Project of Zhejiang Province (Nos. 2010 C02006, 2012C12903-4-1, and 2012C12903-6-3), the Zhejiang Provincial Natural Science Foundation of China (No. LY12C15004), the Public Welfare Project of Zhejiang Province (No. 2011C22011), and the Shaoxing Important Science and Technology Projects (No. 2012A22008), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Gw., Xu, Sc., Mao, Wh. et al. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J. Zhejiang Univ. Sci. B 14, 279–288 (2013). https://doi.org/10.1631/jzus.B1200243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200243

Key words

CLC number

Navigation