Skip to main content
Log in

Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation.

Methods

In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation.

Results

The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples.

Conclusions

Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Matsuyama, T., Sekido, S., Yamaguchi, I., Yoshida, S., Kameya, T., 2002. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J. Radiat. Res., 43:S157–S161. [doi:10.1269/jrr.43.S157]

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, Z., Abu Hassan, A., Idris, N.A., Basiran, N.M., Tanaka, A., Shikazono, N., Oono, Y., Hase, N., 2006. Effects of ion beam irradiation on Oncidium lanceanum Orchids. J. Nucl. Relat. Technol., 3(1):1–8.

    Google Scholar 

  • Bae, C.H., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., Yoshida, S., 2001. Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann. Bot., 88(4):545–553. [doi:10.1006/anbo.2001.1495]

    Article  CAS  Google Scholar 

  • Bajaj, Y.P.S., 1970. Effect of gamma-irradiation on growth, RNA, protein and nitrogen contents of bean callus cultures. Ann. Bot., 34(5):1089–1096.

    CAS  Google Scholar 

  • Balooch, A.W., Soomro, A.M., Naqvi, M.H., Bughio, H.R., Bughio, M.S., 2006. Sustainable enhancement of rice (Oryza sativa L.) production through the use of mutation breeding. Plant Mutat. Rep., 1(1):40–42.

    Google Scholar 

  • Bradford, M., 1976. A rapid and sensitive method for the quantification of the microgram quantities of proteins utilizing the principle of protein dye binding. Anal. Biochem., 72(1-2):248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Byun, M.W., Jo, C., Lee, K.Y., Kim, K.S., 2002. Chlorophyll breakdown by gamma irradiation in a model system containing linoleic acid. J. Am. Oil Chem. Soc., 79(2): 145–150. [doi:10.1007/s11746-002-0449-y]

    Article  CAS  Google Scholar 

  • Chia, J.Y., 2008. Effects of Gamma-Irradiation on Morphological and Physiological Changes in Citrus sinensis. BSc Thesis, Universiti Tunku Abdul Rahman, Malaysia.

    Google Scholar 

  • Cho, H.Y., Lee, H.S., Pai, H.S., 2000. Expression pattern of diverse genes in response to gamma irradiation in Nicotiana tabacum. J. Plant Biol., 43(2):82–87. [doi:10.1007/BF03030499]

    Article  CAS  Google Scholar 

  • Corthals, G., Gygi, S., Aebersold, R., Patterson, S.D., 2000. Identification of proteins by mass spectrometry. Proteome Res., 2(1):286–290.

    Google Scholar 

  • Creanga, D., Mantale, A.M., Ecaterina, F., 2005. The Radiosensitivity of Photosynthetic Processes in Young Maize Plants. Available from http://www.phys.uaic.ro/labs/comb/analele%20stintifice/2005/16_CREANGA_THERADIOSENSITIVITY.pdf [Accessed on Jan. 29, 2010]

    Google Scholar 

  • Croci, C.A., Arguello, J.A., Curvetto, N.R., Orioli, G.A., 1991. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.). Int. J. Radiat. Biol., 59(2):551–557. [doi:10.1080/09553009114550481]

    Article  PubMed  CAS  Google Scholar 

  • Doerge, D.R., Divi, R.L., Churchwell, M.I., 1997. Identification of the colored guaicol oxidation product produced by peroxidases. Anal. Biochem., 250(1):10–17. [doi:10.1006/abio.1997.2191]

    Article  PubMed  CAS  Google Scholar 

  • Dong, X.C., Li, W.J., Liu, Q.F., He, J.Y., Yu, L.X., Zhou, L.B., Qu, Y., Xie, H.M., 2008. The influence of carbon ion irradiation on sweet sorghum seeds. Nucl. Instrum. Methods Phys. Res. B, 266(1):123–126. [doi:10.1016/j.nimb.2007.10.025]

    Article  CAS  Google Scholar 

  • Fu, H.W., Li, Y.F., Shu, Q.Y., 2008. A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol. Breed., 22(2):281–288. [doi:10.1007/s11032-008-9173-7]

    Article  CAS  Google Scholar 

  • Gaber, M.H., 2005. Effect of γ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng., 100(2):203–206. [doi:10.1263/jbb.100.203]

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad, J., Thomas, S., Kamble, S., Vidyasagar, P.B., Sarma, A., 1999. Effect of 7Li (45 MeV) ions on spinach leaves studied by thermoluminescence technique. Nucl. Instrum. Methods Phys. Res. B, 156(1–4):231–235. [doi:10.1016/S0168-583X(99)00286-4]

    Article  CAS  Google Scholar 

  • Gordon, S.A., Weber, R.P., 1953. Enzymatic radiosensitivity of auxinbiosynthesis. Radiat. Res., 21(1):23–31.

    Google Scholar 

  • Hameed, A., Mahmud Shah, T., Atta, B.M., Haq, M.A., Sayed, H., 2008. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in Desi and Kabuli chickpea. Pak. J. Bot., 40(3):1033–1041.

    Google Scholar 

  • Hayashi, Y., Takehisa, H., Kazama, Y., Ichida, H., Ryuto, H., Fukunishi, N., Abe, T., 2007. Effects of ion beam irradiation on mutation induction in rice. Cyclotr. Their Appl., 18:237–239.

    Google Scholar 

  • Hayden, G.A., Friedberg, F., 1964. Effects of gamma radiation on ribonuclease. Radiat. Res., 22(1):130–135. [doi:10.2307/3571703]

    Article  PubMed  CAS  Google Scholar 

  • Hewawasam, W.D.C.J., Bandara, D.C., Aberathne, W.M., 2004. New phenotypes of Crossandra infundibuliformis through in vitro culture and induced mutations. Trop. Agric. Res., 16(1):253–270.

    Google Scholar 

  • Humera, A., 2006. Biochemical and Molecular Markers of Somaclonal Variants and Induced Mutants of Potato (Solanum tuberosum L.). PhD Thesis, University of Punjab Lahore, Pakistan.

    Google Scholar 

  • International Rice Research Institute, 1985. Evaluation of the Physical Environment for Rice Cultivation. In: Soil Physics and Rice. International Rice Research Institute, Manila, p.32–36.

    Google Scholar 

  • Iqbal, J., Kutaček, M., Jiraček, V., 1974. Effects of acute gamma irradiation on the concentration of amino acids and protein-nitrogen in Zea mays. Radiat. Bot., 14(3): 165–172. [doi:10.1016/s0033-7560(74)80032-3]

    Article  CAS  Google Scholar 

  • Jones, H.E., West, H.M., Chamberlain, P.M., Parekh, N.R., Beresford, N.A., Crout, N.M.J., 2004. Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms. J. Environ. Radioact., 74(1–3):57–71. [doi:10.1016/j.jenvrad.2004.01.027]

    Article  PubMed  CAS  Google Scholar 

  • Kalimullah, M., Gaikwad, J.U., Thomas, S., Sarma, A., Vidyasagar, P.B., 2003. Assessment of 1H heavy ion irradiation induced effects in the development of rice (Oryza sativa L.) seedlings. Plant Sci., 165(3):447–454. [doi:10.1016/S0168-9452(03)00026-8]

    Article  CAS  Google Scholar 

  • Khanna, V.K., Maherchandani, N., 1985. Effects of gamma irradiation and seedling growth of “Kabuli” and “Desi” chickpea on the activity of alpha amylase. Indian J. Genet. Plant Breed., 28(2):3–10.

    Google Scholar 

  • Kim, J.H., Baek, M.H., Chung, B.Y., Wi, S.G., Kim, J.S., 2004. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annum L.) seedlings from gamma-irradiated seeds. J. Plant Biol., 47(2): 314–321. [doi:10.1007/BF03030546]

    Article  CAS  Google Scholar 

  • Kirova, E., Nedeva, D., Nikolova, A., Ignatov, G., 2005. Changes in the biomass production and total soluble protein spectra of nitrate-fed and nitrogen-fixing soybeans subjected to gradual water stress. Plant Soil Environ., 51(5):237–242.

    Google Scholar 

  • Kokkinakis, D.M., Brooks, J.L., 1979. Tomato peroxidase: purification, characterization and catalytic properties. Plant Physiol., 63(1):93–99. [doi:10.1104/pp.63.1.93]

    Article  PubMed  CAS  Google Scholar 

  • Li, K., Jiang, S., Yu, H.C., Zhao, J., Zhang, F.S., Carr, C., Zhang, J., Zhang, G., 2009. Analysis of charge and mass effects on peroxidase expressions and activities in Arabidopsis thaliana after low-energy ion irradiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 680(1-2): 64–69. [doi:10.1016/j.mrgentox.2009.09.009]

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of the photosynthetic biomembranes. Methods Enzymol., 148(1):350–382. [doi:10.1016/0076-6879(87)48036-1]

    Article  CAS  Google Scholar 

  • Ling, A.P.K., Chia, J.Y., Hussein, S., Harun, A.R., 2008. Physiological responses of Citrus sinensis to gamma irradiation. World Appl. Sci. J., 5(1):12–19.

    Google Scholar 

  • Maity, J.P., Chakraborty, S., Sandeep, K., Subrata, P., Jean, J., Samal, A.C., Chakraborty, A., Santra, S.C., 2009. Effects of gamma irradiation on edible seed protein, amino acids and genomic DNA during sterilization. Food Chem., 114(4):1237–1244. [doi:10.1016/j.foodchem.2008.11.001]

    Article  CAS  Google Scholar 

  • Maltseva, A.V., Kuzin, M.A., 1975. Effect of gamma irradiation on some physiological properties of histones in Vicia faba and Trifolium pratense. Radiobiology, 14:480–485.

    Google Scholar 

  • Masuda, M., Agong, S.G., Tanaka, A., Shikazono, N., Hase, Y., 2009. Mutation spectrum of tomato induced by seed radiation with carbon and helium ion beams. Acta Hort., 637:257–262.

    Google Scholar 

  • Matsumura, A., Nomizu, T., Furutani, N., Hayashi, K., Minamiyama, Y., Hase, Y., 2010. Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci. Hort., 123(4):558–561. [doi:10.1016/j.scienta.2009.11.004]

    Article  CAS  Google Scholar 

  • Mohamad, O., Mohd Nazir, B., Alias, I., Azlan, S., Abdul Rahim, H., Abdullah, M.Z., Othman, O., 2006. Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat. Rep., 1(1): 27–33.

    Google Scholar 

  • Moussa, H.R., 2006. Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ. J. Plant Physiol., 53(2):193–197. [doi:10.1134/S1021443706020075]

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol.Plant., 15(3):473–497. [doi:10.1111/j.1399-3054.1962.tb08052.x]

    Article  CAS  Google Scholar 

  • Nassar, A.H., Hashim, M.F., Hassan, N.S., Abo-Zaid, H., 2004. Effect of gamma irradiation and phosphorus on growth and oil production of Chamomile (Chamomilla recutita L. Rauschert). Int. J. Agric. Biol., 6(5):776–780.

    Google Scholar 

  • Omar, M.S., Yousif, D.P., Al-Jibouri, A.J.M., Al-Rawi, M.S., Hameed, M.K., 1993. Effects of gamma rays and sodium chloride on growth and cellular constituents of sunflower (Helianthus annuus L.) callus cultures. J. Islamic Acad. Sci., 6(1):69–72.

    Google Scholar 

  • Preuss, S.B., Britt, A.B., 2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164:323–334.

    PubMed  CAS  Google Scholar 

  • Qureshi, M.I., Qadir, S., Zolla, L., 2007. Proteomics-based dissection of stress-responsive pathways in plants. J. Plant Physiol., 164(10):1239–1260. [doi:10.1016/j.jplph.2007.01.013]

    Article  PubMed  CAS  Google Scholar 

  • Rakwal, R., Kimura, S., Shibato, J., Nojima, K., Kim, Y.I., Nahm, B.H., 2007. Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol. Cells, 25(2):1–8.

    Google Scholar 

  • Rao, K.V.M., 2006. Introduction. In: Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, the Netherlands, p.1.

    Google Scholar 

  • Rennie, D.A., Nelson, S.H., 1975. Low dose irradiation of vegetable seeds: the effects on N and P uptake. Can. J. Plant Sci., 55(3):761–769. [doi:10.4141/cjps75-119]

    Article  Google Scholar 

  • Saha, P., Raychaudhuri, S.S., Chakraborty, A., Sudarshan, M., 2010. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl. Radiat. Isot., 68(3):444–449. [doi:10.1016/j.apradiso.2009.12.003]

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K.D., 1986. Induced Mutagenesis in Rice. In: Rice Genetics: Proceedings of the International Rice Genetics Symposium. International Rice Research Institute, Manila, p.680.

    Google Scholar 

  • Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S., Tanaka, A., 2003. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics, 163:1449–1455.

    PubMed  CAS  Google Scholar 

  • Singh, B.B., 1971. Effect of gamma-irradiation on chlorophyll content of maize leaves. Radiat. Bot., 11(3):243–244. [doi:10.1016/S0033-7560(71)90435-2]

    Article  CAS  Google Scholar 

  • Skoog, F., 1935. The effect of gamma irradiation on auxin and plant growth. Physiology, 7(2):227–270.

    CAS  Google Scholar 

  • Strid, A., Chow, W.S., Anderson, J.M., 1990. Effects of supplementary gamma irradiation on photosynthesis in Pisumsativum. Biochemistry, 1020(1):260–268.

    CAS  Google Scholar 

  • Suprasanna, P., Sidha, M., Bapat, V.A., 2009. Integrated Approaches of Mutagenesis and in vitro Selection for Crop Improvement. In: Plant Tissue Culture and Molecular Markers: Their Roles in Improving Crop Productivity. IK International Publishing House, India, p.73–91.

    Google Scholar 

  • Tanaka, A., Kobayashi, Y., Hase, Y., Watanabe, H., 2002. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams. J. Exp. Bot., 53(369): 683–687. [doi:10.1093/jexbot/53.369.683]

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Tello, A., Uozumi, T., Hidaka, M., Kobayashi, Y., Wanatabe, H., 2005. Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus, protoplasts and cell suspensions of Lavatera thuringiaca. Plant Cell Rep., 16(1–2):46–49. [doi:10.1007/s002990050173]

    Google Scholar 

  • Veitch, N.C., 2004. Structural determinants of plant peroxidase function. Phytochem. Rev., 3(1/2):3–18. [doi:10.1023/B:PHYT.0000047799.17604.94]

    Article  CAS  Google Scholar 

  • Verma, S., Lakra, N., Sarma, A., Misha, S.N., 2009. Effect of Li+ Heavy Ion on Hydrogen Peroxide Decomposing Enzymes in Leaves of Brassica juncea. MS Thesis, Maharshi Dayanand University, Rothak.

    Google Scholar 

  • Wang, K., 2006. Indica Rice (Oryza sativa, BR29 and IR64). In: Agrobacterium Protocols. Volume 1, Humana Press Inc., New Jersey, p.201.

    Google Scholar 

  • Widholm, J.M., 1989. Mutant isolation techniques with plant tissue culture. J. Tissue Cult. Methods, 12(4):151–156. [doi:10.1007/BF01404442]

    Article  Google Scholar 

  • Yamaguchi, H., Hase, Y., Tanaka, A., Shikazono, N., Degi, K., Shimizu, A., Morishita, T., 2009. Mutagenic effects of ion beam irradiation on rice. Breed. Sci., 59(2):169–177. [doi:10.1270/jsbbs.59.169]

    Article  CAS  Google Scholar 

  • Zaka, R., Vandecasteele, C.M., Misset, M.T., 2002. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata. J. Exp. Bot., 53(376):1979–1987. [doi:10.1093/jxb/erf041]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhang, H., Zhang, X., Zhu, J., 2008. Assessment of biological changes in wheat seedlings induced by 12C6+-ion irradiation. Nucl. Sci. Tech., 19(3):138–141. [doi:10.1016/S1001-8042(08)60039-1]

    Article  CAS  Google Scholar 

  • Zhou, L., Li, W., Yu, L., Li, P., Li, Q., Ma, S., Dong, X., Zhou, G., Leloup, C., 2006. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int. J. Radiat. Biol., 82(7):473–481. [doi:10.1080/09553000600863080]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pick Kiong Ling.

Additional information

Project supported by the Nuclear Safety Research Association (NSRA), Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, A.P.K., Ung, Y.C., Hussein, S. et al. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. J. Zhejiang Univ. Sci. B 14, 1132–1143 (2013). https://doi.org/10.1631/jzus.B1200126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200126

Key words

CLC number

Navigation