Skip to main content
Log in

Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabral, J.M.S., Aires-Barros, M.R., Pinheiro, H., Prazeres, D.M.F., 1997. Biotransformation in organic media by enzymes and whole cells. J. Biotechnol., 59(1–2):133–143. [doi:10.1016/s0168-1656(97)00176-4]

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, F., Marques, M.P.C., de Carvalho, C.C.C.R., Cabral, J.M.S., Fernandes, P., 2009. Sitosterol bioconversion with resting cells in liquid polymer based systems. Biores. Technol., 100(17):4050–4053. [doi:10.1016/j.biortech.2009.03.044]

    Article  CAS  Google Scholar 

  • Chen, Q.H., He, G.Q., Mokhtar, A.M.A., 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol., 30(5):667–672. [doi:10.1016/s0141-0229(02)00028-5]

    Article  CAS  Google Scholar 

  • Chen, Q.H., Fu, M.L., Liu, J., Zhang, H.F., He, G.Q., Ruan, H., 2008. Optimization of ultrasonic-assisted extraction (UAE) of betulin from white irch bark using response surface methodology. Ultrason. Sonochem., 16(5):599–604. [doi:10.1016/j.ultsonch.2008.11.009]

    Article  PubMed  Google Scholar 

  • Cruz, A., Fernandes, P., Cabral, J.M.S., Pinheiro, H.M., 2001. Whole-cell bioconversion of β-sitosterol in aqueous-oganic two-phase systems. J. Mol. Catal. B: Enzym., 11(4–6):579–585. [doi:10.1016/s1381-1177(00)00047-3]

    Article  CAS  Google Scholar 

  • de Brabandere, V.I., Thienpont, L.M., Stockl, D., de Leenheer, A.P., 1997. 13C-NMR and mass spectral data of steroids with a 17,17-dialkyl-l8-nor-l3(14)-ene substructure. J. Lipid Res., 38(4):780–789.

    PubMed  Google Scholar 

  • Dogra, N., Qazi, G.N., 2001. Steroid biotransformation by different strains of Micrococcus sp. Folia Microiol., 46(1): 17–20. [doi:10.1007/BF02825877]

    Article  CAS  Google Scholar 

  • Fernandes, P., Cabral, J.M.S., 2007. Phytosterols: applications and recovery methods. Biores. Technol., 98(12):2335–2350. [doi:10.1016/j.biortech.2006.10.006]

    Article  CAS  Google Scholar 

  • Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H.M., Cabral, J.M.S., 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol., 32(6): 688–705. [doi:10.1016/s0141-0229(03)00029-2]

    Article  CAS  Google Scholar 

  • Ghosh, D., Hallenbeck, P.C., 2010. Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Bioresour. Technol., 101(6):1820–1825. [doi:10.1016/j/biortech.2009.10.020]

    Article  PubMed  CAS  Google Scholar 

  • Goswami, D., Sen, R., Basu, J.K., De, S., 2009. Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology. Bioresour. Technol., 100(18):4067–4073. [doi:10.1016/j/biortech.2008.11.040]

    Article  PubMed  CAS  Google Scholar 

  • Hegazy, M.E.F., Gamal-Eldeen, A.M., Ei-Halawany, A.M., Mohamed, A.E.H.H., Paré, P.W., 2012. Steroidal metabolites transformed by Marchantia polymorpha cultures block breast cancer estrogen biosynthesis. Cell Biochem. Biophys., 63(1):85–96. [doi:10.1007/s12013-012-9343-4]

    Article  PubMed  CAS  Google Scholar 

  • Hesselink, P.G.M., Vliet, S.V., Vries, H.D., Witholt, B., 1989. Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb. Technol., 11(7):398–404. [doi:10.1016/0141-0229(89)90133-6]

    Article  CAS  Google Scholar 

  • Huang, C.L., Chen, Y.R., Liu, W.H., 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol., 39(2):296–300. [doi:10.1016/j.enzmictec.2005.10.017]

    Article  CAS  Google Scholar 

  • Kim, P.Y., Pollard, D.J., Woodley, J.M., 2007. Substrate supply for effective biocatalysis. Biotechnol. Prog., 23(1):74–82. [doi:10.1021/bp060314b]

    Article  PubMed  CAS  Google Scholar 

  • Kutney, J.P., Milanova, R.K., Vassilev, C.D., Stefanov, S.S., Nedelcheva, N.V., 2000. Process for the Microbial Conversion of Phytosterol to Androstenedione and Androstadienedione. US Patent 6071714.

  • Lin, Y.L., Song, X., Fu, J., Lin, J.Q., Qu, Y.B., 2009. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme sheld. Bioresour. Technol., 100(5):1864–1867. [doi:10.1016/j/biortech.2008.09.040]

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Fu, M.L., Chen, Q.H., 2010. Biotransformation optimization of betulin into betulinic acid production catalysed by cultured Armillaria luteo-virens sacc ZJUQH 100-6 cells. J. Appl. Microbiol., 110(1):90–97. [doi:10.1111/j.1365-2672.2010.04857.x]

    Article  PubMed  Google Scholar 

  • Liu, Z.Q., Zhang, J.F., Zheng, Y.G., Shen, Y.C., 2007. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J. Appl. Microbiol., 104(3):861–872. [doi:10.1111/j.1365-2672.2007.03603.x]

    Article  PubMed  Google Scholar 

  • Loftsson, T., Brewster, M.E., 1996. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci.-US, 85(10):1017–1025. [doi: 10.1021/js950534b]

    Article  CAS  Google Scholar 

  • Ma, Y.H., Wang, M., Fan, Z., Shen, Y.B., Zhang, L.T., 2009. The influence of host-guest inclusion complex formation on the biotransformation of cortisone acetate Δ1-dehydrogenation. J. Steroid Biochem. Mol. Biol., 117(4):146–151. [doi:10.1016/j.jsbmb.2009.08.007]

    Article  PubMed  CAS  Google Scholar 

  • Malaviya, A., Gomes, J., 2008. Androstenedione production by biotransformation of phytosterols. Biores. Technol., 99(15):6725–6737. [doi:10.1016/j.biortech.2008.01.039]

    Article  CAS  Google Scholar 

  • Manosroi, A., Saowakhon, S., Manosroi, J., 2008. Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J. Steroid Biochem., 108(1–2):132–136. [doi:10.1016/j.jsbmb.2007.05.032]

    CAS  Google Scholar 

  • Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiment. Wiley-Interscience Publication, New York, p.219–264.

    Google Scholar 

  • Nalluri, B.N., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G., 2005. Inclusion complexation and dissolution properties of nimesulide. J. Incl. Phenom. Macrocycl. Chem., 53(1–2):103–110. [doi:10.1007/s10847-005-1676-9]

    Article  CAS  Google Scholar 

  • Pérez, C., Falero, A., Duc, H.L., Balcinde, Y., Hung, B.R., 2006. A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J. Ind. Microbiol. Biotechnol., 148(8):719–723. [doi:10.1007/s10295-006-0148-6]

    Article  Google Scholar 

  • Rodina, N.V., Molchanova, M.A., Voishvillo, N.E., Andryushina, V.A., Stytsenko, T.S., 2008. Conversion of phytosterols into androstenedione by Mycobacterium neoaurum. Appl. Biochem. Microbiol., 44(1):48–54. [doi:10.1134/S0003683808010080]

    Article  CAS  Google Scholar 

  • Roglič, U., Žnidaršič-Plazl, P., Plazl, L., 2005. The influence of β-cyclodextrin on the kinetics of progesterone transformation by Rhizopus nigricans. Biocatal. Biotransfor., 23(5):299–305. [doi:10.1080/10242420500175929]

    Article  Google Scholar 

  • Roglič, U., Plazl, L., Žnidaršič-Plazl, P., 2007. Batch and continuous transformation of progesterone by Rhizopus nigricans pellets in the presence of β-cyclodextrin. Biocatal. Biotransfor., 25(1):16–23. [doi:10.1080/10242420601060954]

    Article  Google Scholar 

  • Schimid, A., Kollmer, A., Mathys, R.G., Witholt, B., 1998. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles, 2(3):249–256. [doi:10.1007/s007920050067]

    Article  Google Scholar 

  • Senanayake, S.P.J.N., Shahidi, F., 2002. Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. Food Chem., 77(1):115–123. [doi:10.1016/s0308-8146(01)00311-9]

    Article  Google Scholar 

  • Shen, Y.B., Wang, M., Zhang, L.T., Ma, Y.H., Ma, B., Zheng, Y., Liu, H., Luo, J.M., 2011. Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transformation Arthrobacter simplex and Mycobacterium sp. Appl. Microbiol. Biotechnol., 90(6): 1995–2003. [doi:10.1007/s00253-011-3214-6]

    Article  PubMed  CAS  Google Scholar 

  • Simon, L.M., László, K., Vértesi, A., Bagi, K., Szajáni, B., 1998. Stability of hydrolytic enzymes in water-organic solvent systems. J. Mol. Catal. B: Enzym., 4(1–2):41–45. [doi:10.1016/s1381-1177(97)00019-2]

    Article  CAS  Google Scholar 

  • Sripalakit, P., Wichai, U., Saraphanchotiwitthaya, A., 2006. Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid-converting microbial strains. J. Mol. Catal. B: Enzym., 41(1–2):49–54. [doi:10.1016/j.molcatb.2006.04.007]

    Article  CAS  Google Scholar 

  • Staebler, A., Cruz, A., van der Goot, W., Pinheiro, H.M., Cabral, J.M.S., Fernandes, P., 2004. Optimization of androstenedione production in an organic-aqueous two-liquid phase system. J. Mol. Catal. B: Enzym., 29(1–6):19–23. [doi:10.1016/j.molcatb.2004.01.013]

    Article  CAS  Google Scholar 

  • Stefan, A., Palazzo, G., Ceglie, A., Panzavolta, E., Hochkoeppler, A., 2002. Water-in-oil microemulsions to sustain long-term viability of microbial cells in organic solvents. Biotechnol. Bioeng., 81(3):323–328. [doi:10.1002/bit.10476]

    Article  Google Scholar 

  • Stefanov, S., Yankov, D., Beschkov, V., 2006. Biotransformation of phytosterols to androstenedione in two phase water-oil systems. Chem. Biochem. Eng. Q, 20(4): 421–427.

    CAS  Google Scholar 

  • Szejtli, J., 1998. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 98(5):1743–1754. [doi:10.1021/cr970022c]

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.L., Zhao, F.S., Hao, X.Q., Chen, D.J., Li, D.T., 2004. Microbial transformation of hydrophobic compound in cloud point system. J. Mol. Catal. B: Enzym., 27(4–6): 147–153. [doi:10.1016/j.molcatb.2003.11.002]

    Article  CAS  Google Scholar 

  • Wang, Z.L., Zhao, F.S., Chen, D.J., Li, D.T., 2006. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem., 41(3):557–561. [doi:10.1016/j.procbio.2005.09.014]

    Article  CAS  Google Scholar 

  • Wei, W., Fan, S.Y., Wang, F.Q., Wei, D.Z., 2010. A new steroid-transformation strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9α-hydroxylase in NwIB-01. Appl. Biochem. Biotechnol., 162(5):1446–1456. [doi:10.1007/s12010-010-8919-y]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.T., Wang, M., Shen, Y.B., Ma, Y.H., Luo, J.M., 2009. Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Appl. Biochem. Biotechnol., 159(3):642–654. [doi:10.1007/s12010-008-8499-2]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing He.

Additional information

Project (No. 31130042) support by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Xy., Peng, Y., Su, Zr. et al. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. J. Zhejiang Univ. Sci. B 14, 132–143 (2013). https://doi.org/10.1631/jzus.B1200067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200067

Key words

CLC number

Navigation