Skip to main content
Log in

Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

High temperature adversely affects quality and yield of tomato fruit. Polyamine can alleviate heat injury in plants. This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit.

Methods

An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd, 1 mmol/L) and high temperature (33/27 °C) treatments in tomato fruits at mature green stage.

Results

Of the 10 101 tomato probe sets represented on the array, 127 loci were differentially expressed in high temperature-treated fruits, compared with those under normal conditions, functionally characterized by their involvement in signal transduction, defense responses, oxidation reduction, and hormone responses. However, only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits, which were involved in primary metabolism, signal transduction, hormone responses, transcription factors, and stress responses. Meanwhile, 55 genes involved in energy metabolism, cell wall metabolism, and photosynthesis were down-regulated in Spd-treated fruits.

Conclusions

Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apelbaum, A., Burgoon, A.C., Anderson, J.D., Lieberman, M., 1981. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol., 68(2):453–456. [doi:10.1104/pp.68.2.453]

    Article  PubMed  CAS  Google Scholar 

  • Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57(1):289–300.

    Google Scholar 

  • Bohnert, H.J., Gong, Q.Q., Li, P.H., Ma, S.S., 2006. Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr. Opin. Plant Biol., 9(2):180–188. [doi:10.1016/j.pbi.2006.01.003]

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Zou, Y.J., Ding, S.L., Zhang, J.J., Yu, X.L., Cao, J.S., Lu, G., 2009. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J. Integr. Plant Biol., 51(5):489–499. [doi:10.1111/j.1744-7909.2009.00816.x]

    Article  PubMed  CAS  Google Scholar 

  • Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci., 11(2):80–88. [doi:10. 1016/j.tplants.2005.12.009]

    Article  PubMed  CAS  Google Scholar 

  • Couée, I., Hummel, I., Sulmon, C., Gouesbet, G., El Amrani, A., 2004. Involvement of polyamines in root development. Plant Cell Tiss. Org. Cult., 76(1):1–10. [doi:10.1023/A: 1025895731017]

    Article  Google Scholar 

  • Escribano, M.I., Merodio, C., 1994. The relevance of polyamine levels in cherimoya (Annona cherimola Mill.) fruit ripening. J. Plant Physiol., 143(2):207–212. [doi:10.1016/S0176-1617(11)81688-3]

    Article  CAS  Google Scholar 

  • Fei, Z.J., Tang, X.M., Alba, R., Giovannoni, J., 2006. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucl. Acids Res., 34(90001):D766–D770. [doi:10.1093/nar/gkj110]

    Article  PubMed  CAS  Google Scholar 

  • Groppa, M.D., Benavides, M.P., 2008. Polyamines and abiotic stress: recent advances. Amino Acids, 34(1):35–45. [doi:10.1007/s00726-007-0501-8]

    Article  PubMed  CAS  Google Scholar 

  • Groppa, M.D., Tomaro, M.L., Benavides, M.P., 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci., 161(3):481–488. [doi:10.1016/S0168-9452(01)00432-0]

    Article  CAS  Google Scholar 

  • Iba, K., 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53(1):225–245. [doi:10.1146/annurev.arplant.53.100201.160729]

    Article  PubMed  CAS  Google Scholar 

  • Inaba, M., Crandall, P.G., 1988. Electrolyte leakage as an indicator of high-temperature injury to harvested mature green tomatoes. J. Am. Soc. Hort. Sci., 113(1):96–99.

    Google Scholar 

  • Kakkar, R.K., Sawhney, V.K., 2002. Polyamine research in plants—a changing perspective. Physiol. Plant., 116(3): 281–292. [doi:10.1034/j.1399-3054.2002.1160302.x]

    Article  CAS  Google Scholar 

  • Kasukabe, Y., He, L.X., Nada, K., Misawa, S., Ihara, I., Tachibana, S., 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol., 45(6):712–722. [doi:10.1093/pcp/pch083]

    Article  PubMed  CAS  Google Scholar 

  • Kaur, N., Gupta, A.K., 2005. Signal transduction pathways under abiotic stresses in plants. Curr. Sci. India, 88(11): 1771–1780.

    CAS  Google Scholar 

  • Königshofer, H., Lechner, S., 2002. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol. Biochem., 40(1):51–59. [doi:10.1016/S0981-9428(01)01347-X]

    Article  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10(3): 310–316. [doi:10.1016/j.pbi.2007.04.011]

    Article  PubMed  CAS  Google Scholar 

  • Lang, Q.L., Zhou, X.C., Zhang, X.L., Drabek, R., Zou, Z.X., Ren, Y.L., Li, T.B., Chen, J.S., Gao, X.L., 2011. Microarray-based identification of tomato microRNAs and time course analysis of their response to Cucumber mosaic virus infection. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(2):116–125. [doi:10.1631/jzus.B100 0278]

    Article  Google Scholar 

  • Law, D.M., Davies, P.J., Mutschler, M.A., 1991. Polyamine-induced prolongation of storage in tomato fruits. Plant Growth Regul., 10(4):283–290. [doi:10.1007/BF00024588]

    Article  CAS  Google Scholar 

  • Li, S.J., Fu, Q.T., Huang, W.D., Yu, D.Q., 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep., 28(4):683–693. [doi:10. 1007/s00299-008-0666-y]

    Article  PubMed  CAS  Google Scholar 

  • Liu, K., Fu, H.H., Bei, Q.X., Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol., 124(3):1315–1325. [doi:10.1104/pp.124.3.1315]

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D.G., Romeis, T., 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. PNAS, 102(30):10736–10741. [doi:10.1073/pnas.0502954102]

    Article  PubMed  CAS  Google Scholar 

  • Lurie, S., Handros, A., Fallik, E., Shapira, R., 1996. Reversible inhibition of tomato fruit gene expression at high temperature—effects on tomato fruit ripening. Plant Physiol., 110(4):1207–1214.

    PubMed  CAS  Google Scholar 

  • Ma, S.S., Gong, Q.Q., Bohnert, H.J., 2006. Dissecting salt stress pathways. J. Exp. Bot., 57(5):1097–1107. [doi:10. 1093/jxb/erj098]

    Article  PubMed  CAS  Google Scholar 

  • Mariani, P., Dorazi, D., Bagni, N., 1989. Polyamines in primary walls of carrot cells: endogenous content and interactions. J. Plant Physiol., 135(4):508–510. [doi:10. 1016/S0176-1617(89)80113-0]

    Article  CAS  Google Scholar 

  • Mattoo, A., Cassol, T., Mehta, R., Handa, A., Ali, N., Abdul-Baki, A., 2002. Genetic engineering of tomato fruit for sustained accumulation of polyamines during ripening to study their physiological role(s). Acta Hort. (ISHS), 575(1-2):157–161.

    CAS  Google Scholar 

  • Momcilovic, I., Ristic, Z., 2007. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J. Plant Physiol., 164(1):90–99. [doi:10.1016/j.jplph.2006.01.010]

    Article  PubMed  CAS  Google Scholar 

  • Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C.W., Wright, M.H., Ahrens, R., Wang, Y., 2005. The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol., 138(3):1310–1317. [doi:10.1104/pp.105.060707]

    CAS  Google Scholar 

  • Nag, S., Saha, K., Choudhuri, M.A., 2001. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul., 20(2):182–194. [doi:10.1007/s0034400 10016]

    Article  CAS  Google Scholar 

  • Nayyar, H., Chander, S., 2004. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agron. Crop Sci., 190(5): 355–365. [doi:10.1111/j.1439-037X.2004.00106.x]

    Article  CAS  Google Scholar 

  • Ouyang, B., Yang, T., Li, H.X., Zhang, L., Zhang, Y.Y., Zhang, J.H., Fei, Z.J., Ye, Z.B., 2007. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J. Exp. Bot., 58(3):507–520. [doi:10.1093/jxb/erl258]

    Article  PubMed  CAS  Google Scholar 

  • Pal Bais, H., Ravishankar, G.A., 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Org. Cult., 69(1):1–34. [doi:10.1023/A:1015064227278]

    Article  Google Scholar 

  • Paschalidis, K.A., Roubelakis-Angelakis, K.A., 2005. Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol., 138(4):2174–2184. [doi:10.1104/pp.105.063941]

    Article  PubMed  CAS  Google Scholar 

  • Paull, R.E., Chen, N.J., 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol., 21(1):21–37. [doi:10.1016/S0925-5214(00)00162-9]

    Article  Google Scholar 

  • Perez-Amador, M.A., Leon, J., Green, P.J., Carbonell, J., 2002. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in arabidopsis. Plant Physiol., 130(3):1454–1463. [doi:10.1104/pp.009951]

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Vicente, A., Martínez-Romero, D., Carbonell, Á., Serrano, M., Riquelme, F., Guillén, F., Valero, D., 2002. Role of polyamines in extending shelf life and the reduction of mechanical damage during plum (Prunus salicina Lindl.) storage. Postharvest Biol. Technol., 25(1):25–32. [doi:10.1016/S0925-5214(01)00146-6]

    Article  Google Scholar 

  • Picton, S., Grierson, D., 1988. Inhibition of expression of tomato-ripening genes at high-temperature. Plant Cell Environ., 11(4):265–272. [doi:10.1111/j.1365-3040.1988. tb01145.x]

    Article  CAS  Google Scholar 

  • Pressman, E., Peet, M.M., Pharr, D.M., 2002. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot., 90(5):631–636. [doi:10. 1093/aob/mcf240]

    Article  PubMed  CAS  Google Scholar 

  • Ramakers, C., Ruijter, J.M., Deprez, R.H., Moorman, A.F., 2003. Assumption-free analysisi of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett., 339(1):62–66. [doi:10.1016/S0304-3940(02)01423-4]

    Article  PubMed  CAS  Google Scholar 

  • Rastogi, R., Davies, P.J., 1991. Polyamine metabolism in ripening tomato fruit: 2. polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit. Plant Physiol., 95(1): 41–45. [doi:10.1104/pp.95.1.41]

    Article  PubMed  CAS  Google Scholar 

  • Renaut, J., Hoffmann, L., Hausman, J.F., 2005. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol. Plant., 125(1):82–94. [doi:10.1111/j.1399-3054. 2005.00554.x]

    Article  CAS  Google Scholar 

  • Roy, M., Wu, R., 2001. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci., 160(5):869–875. [doi:10. 1016/S0168-9452(01)00337-5]

    Article  PubMed  CAS  Google Scholar 

  • Sato, S., Peet, M.M., Gardner, R.G., 2001. Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci. Hort., 90(3–4):243–254. [doi:10.1016/S0304-4238(00)00262-4]

    Article  Google Scholar 

  • Selth, L.A., Dogra, S.C., Rasheed, M.S., Healy, H., Randles, J.W., Rezaian, M.A., 2005. A NAC domain protein interacts with tomato leaf cuil virus replication accessory protein and enhances viral replication. Plant Cell, 17(1):311–325. [doi:10.1105/tpc.104.027235]

    Article  PubMed  CAS  Google Scholar 

  • Sun, C.W., Callis, J., 1997. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs of and in response to environmental changes. Plant J., 11(5):1017–1027. [doi:10.1046/j.1365-313X. 1997.11051017.x]

    Article  PubMed  CAS  Google Scholar 

  • Thu-Hang, P., Bassie, L., Safwat, G., Trung-Nghia, P., Christou, P., Capell, T., 2002. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol., 129(4):1744–1754. [doi:10.1104/pp.010966]

    Article  PubMed  Google Scholar 

  • Todorova, D., Sergiev, I., Alexieva, V., Karanov, E., Smith, A., Hall, M., 2007. Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regul., 51(3): 185–191. [doi:10.1007/s10725-006-9143-1]

    Article  CAS  Google Scholar 

  • Torrigiani, P., Bregoli, A.M., Ziosi, V., Scaramagli, S., Ciriaci, T., Rasori, A., Biondi, S., Costa, G., 2004. Pre-harvest polyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in Stark Red Gold nectarines (Prunus persica L. Batsch). Postharvest Biol. Technol., 33(3):293–308. [doi:10.1016/j.postharvbio.2004.03.008]

    Article  CAS  Google Scholar 

  • Valero, D., Perez-Vicente, A., Martinez-Romero, D., Castillo, S., Guillen, G., Serrano, M., 2002. Plum storability improved after calcium and heat postharvest treatments: role of polyamines. J. Food Sci., 67(7):2571–2575. [doi:10.1111/j.1365-2621.2002.tb08778.x]

    Article  CAS  Google Scholar 

  • Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., Pirona, R., Di Maro, A., Coraggio, I., Genga, A., 2006. The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol. Mol. Plant Pathol., 69(1–3):26–42. [doi:10.1016/j.pmpp.2006.12.005]

    Article  CAS  Google Scholar 

  • Verma, S., Mishra, S.N., 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol., 162(6): 669–677. [doi:10.1016/j.jplph.2004.08.008]

    Article  PubMed  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot., 61(3):199–223. [doi:10.1016/j.envexpbot.2007.05.011]

    Article  Google Scholar 

  • Walden, R., Cordeiro, A., Tiburcio, A.F., 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol., 113(4):1009–1013. [doi:10. 1104/pp.113.4.1009]

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.Y., Conway, W.S., Abbott, J.A., Kramer, G.F., Sams, C.E., 1993. Postharvest infiltration of polyamines and calcium influences ethylene production and texture changes in’ Golden Delicious’ apples. J. Am. Soc. Hort. Sci., 118(6):801–806.

    CAS  Google Scholar 

  • Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9(5):244–252. [doi:10.1016/j.tplants.2004.03.006]

    Article  PubMed  CAS  Google Scholar 

  • Yakir, D., Sadovski, A., Rabinowitch, H.D., Rudich, J., 1984. Effect of high-temperature on quality of processing-tomatoes of various genotypes ripened off the vine. Sci. Hort., 23(4):323–330. [doi:10.1016/0304-4238(84)90028-1]

    Article  Google Scholar 

  • Yamamoto, A., Bhuiyan, N.H., Waditee, R., Tanaka, Y., Esaka, M., Oba, K., Jagendorf, A.T., Takabe, T., 2005. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J. Exp. Bot., 56(417):1785–1796. [doi:10.1093/jxb/eri167]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Ma, X.Y., Qian, Y.J., Zhou, X.Y., 2010. Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(2):109–114. [doi:10.1631/jzus.B0900176]

    Article  CAS  Google Scholar 

  • Zhang, H.W., Huang, Z.J., Xie, B.Y., Chen, Q., Tian, X., Zhang, X.L., Zhang, H.B., Lu, X.Y., Huang, D.F., Huang, R.F., 2004. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta, 220(2):262–270. [doi: 10.1007/s00425-004-1347-x]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lu.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2009CB119000), the National Natural Science Foundation of China (Nos. 31071804 and 30771470), and the Zhejiang Provincial Natural Science Foundation (Nos. R3110209 and 2009C32025), China

Electronic supplementary materials: The online version of this article (doi:10.1631/jzus.B1100060) contains supplementary materials, which are available to authorized users

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Sun, Rr., Wang, Fy. et al. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J. Zhejiang Univ. Sci. B 13, 283–297 (2012). https://doi.org/10.1631/jzus.B1100060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100060

Key words

CLC number

Navigation