Skip to main content
Log in

Fuzzy finish time modeling for project scheduling

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This research aims at developing a new fuzzy activity finish time estimation model for project scheduling management. With the application of the fuzzy quality function deployment (FQFD) and fuzzy analytic hierarchy process (FAHP) methods, the degree of fuzziness for every project activity is calculated in accordance with considerations of project uncertainties. These uncertainties are measured by the risk level of such project-related characteristics as time limit, activity start time, budget, manpower, technological difficulty, and facility requirements. In this paper, rather than applying the de-fuzzification technique to obtain the crisp activity duration for project scheduling, the fuzzy finish time estimation method for every activity is proposed based on the degree of fuzziness. The corresponding fuzzy activity duration time plot is also developed in a new fuzzy Gantt chart. The proposed model can provide a reasonable fuzzy finish time estimation for every activity, while most scheduling methods only provide the finish time of the entire project. Compared to existing models, this time estimation model and its corresponding Gantt chart are predicted to have higher reliability and practical application in project management and scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ash, R.C., Pittman, P.H., 2008. Towards holistic project scheduling using critical chain methodology enhanced with PERT buffering. International Journal of Project Organization and Management, 1(2):185–203. [doi:10.1504/IJPOM.2008.022191]

    Article  Google Scholar 

  • Azaron, A., Perkgoz, C., Sakawa, M., 2005. A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied Mathematics and Computation, 168(2): 1317–1339. [doi:10.1016/j.amc.2004.10.021]

    Article  MathSciNet  MATH  Google Scholar 

  • Azaron, A., Katagiri, H., Sakawa, M., Kato, K., Memariani, A., 2006. A multi-objective resource allocation problem in PERT networks. European Journal of Operational Research, 172(3):838–854. [doi:10.1016/j.ejor.2004.11.018]

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee, A., Paul, A., 2008. On path correlation and PERT bias. European Journal of Operational Research, 189(3): 1208–1216. [doi:10.1016/j.ejor.2007.01.061]

    Article  MathSciNet  MATH  Google Scholar 

  • Bottani, E., 2009. A fuzzy QFD approach to achieve agility. International Journal of Production Economics, 119(2): 380–391. [doi:10.1016/j.ijpe.2009.02.013]

    Article  Google Scholar 

  • Bottani, E., Rizzi, A., 2006. Strategic management of logistics service: a fuzzy quality function deployment approach. International Journal Production Economics, 103(2): 585–599. [doi:10.1016/j.ijpe.2005.11.006]

    Article  Google Scholar 

  • Chen, C.T., Huang, S.F., 2007. Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12):2448–2458. [doi:10.1016/j.ins.2007.01.035]

    Article  MATH  Google Scholar 

  • Chen, M.K., Hsu, S.P., 2004. Fuzzy critical chain based project management. Journal of the Chinese Institute of Industrial Engineers, 21(2):167–176. [doi:10.1080/10170660409509398]

    Article  MathSciNet  Google Scholar 

  • Chen, S.P., 2007. Analysis of critical paths in a project network with fuzzy activity times. European Journal of Operational Research, 183(1):442–459. [doi:10.1016/j.ejor.2006.06.053]

    Article  MATH  Google Scholar 

  • Chen, Y., Fung, R.Y.K., Tang, J., 2006. Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator. European Journal of Operational Research, 174(3):1553–1566. [doi:10.1016/j.ejor.2004.12.026]

    Article  MATH  Google Scholar 

  • Cheng, C.H., Mon, D.L., 1994. Evaluating weapon system by analytic hierarchy process based on fuzzy scales. Fuzzy Sets and Systems, 63(1):1–10. [doi:10.1016/0165-0114(94)90140-6]

    Article  MathSciNet  Google Scholar 

  • Cohen, I., Mandelbaum, A., Shtub, A., 2004. Multi-project scheduling and control: a process-based comparative study of the critical chain methodology and some alternatives. Project Management Journal, 35(2):39–50.

    Google Scholar 

  • Franceschini, F., Rupil, A., 1999. Rating scales and prioritization in QFD. International Journal of Quality & Reliability Management, 16(1):85–97. [doi:10.1108/02656719910250881]

    Article  Google Scholar 

  • Goren, S., Sabuncuoglu, I., 2008. Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1):66–83. [doi:10.1080/07408170701283198]

    Article  Google Scholar 

  • Kahraman, C., Ertay, T., Büyüközkan, G., 2006. A fuzzy optimization model for QFD planning process using analytic network approach. European Journal of Operational Research, 171(2):390–411. [doi:10.1016/j.ejor.2004.09.016]

    Article  MATH  Google Scholar 

  • Kutanoglu, E., Wu, S., 2004. Improving scheduling robustness via preprocessing and dynamic adaptation. IIE Transactions, 36(11):1107–1124. [doi:10.1080/07408170490500681]

    Article  Google Scholar 

  • Leus, R., Herroelen, W., 2004. Stability and resource allocation in project planning. IIE Transactions, 36(7):667–682. [doi:10.1080/07408170490447348]

    Article  Google Scholar 

  • Liang, T.F., 2009. Fuzzy multi-objective project management decisions using two-phase fuzzy goal programming approach. Computer and Industrial Engineering, 57(4): 1407–1416. [doi:10.1016/j.cie.2009.07.010]

    Article  Google Scholar 

  • Lin, M.C., Wang, C.C., Chen, T.C., 2006. A strategy for managing customer-oriented product design. Concurrent Engineering, 14(3):231–244. [doi:10.1177/1063293X06068390]

    Article  MathSciNet  Google Scholar 

  • Liu, S.T., 2003. Fuzzy activity times in critical path and project crashing problems. Cybernetics and Systems, 34(2): 161–172. [doi:10.1080/01969720302865]

    Article  MATH  Google Scholar 

  • Liu, Y.C., Chuang, C.Y., Yang, S.M., 2008. Application of Fuzzy QFD for Knowledge Acquisition in Product Design. Proceedings of the 9th Asia Pacific Industrial Engineer and Management Systems Conference, p.2048–2059.

    Google Scholar 

  • Long, L.D., Ohsato, A., 2008. Fuzzy critical chain method for project scheduling under resource constraints and uncertainly. International Journal of Project Management, 26(6):688–698. [doi:10.1016/j.ijproman.2007.09.012]

    Article  Google Scholar 

  • Tukel, O.I., Rom, W.O., Eksioglu, S.D., 2006. An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 172(2): 401–416. [doi:10.1016/j.ejor.2004.10.019]

    Article  MATH  Google Scholar 

  • Vanegas, L.V., Labib, A.W., 2001. A fuzzy quality function deployment (FQFD) model for deriving optimum targets. International Journal of Production Research, 39(1): 99–120. [doi:10.1080/00207540010005079]

    Article  MATH  Google Scholar 

  • Wang, J.H., Hao, J., 2007. Fuzzy linguistic PERT. IEEE Transactions on Fuzzy Systems, 15(2):133–144. [doi:10.1109/TFUZZ.2006.879975]

    Article  Google Scholar 

  • Yakhchali, S.H., Ghodsypour, S.H., 2010. Computing latest starting times of activities in interval-valued networks with minimal time lags. European Journal of Operational Research, 200(3):874–880. [doi:10.1016/j.ejor.2009.01.051]

    Article  MATH  Google Scholar 

  • Yeo, K.T., Ning, J.H., 2006. Managing uncertainty in major equipment procurement in engineering projects. European Journal of Operational Research, 171(1):123–134. [doi:10.1016/j.ejor.2004.06.036]

    Article  MathSciNet  MATH  Google Scholar 

  • Zammori, F.A., Braglia, M., Frosolini, M., 2009. A fuzzy multi-criteria approach for critical path definition. International Journal of Project Management, 27(3):278–291. [doi:10.1016/j.ijproman.2008.03.006]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-chuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yc., Yang, Sm. & Lin, Yt. Fuzzy finish time modeling for project scheduling. J. Zhejiang Univ. Sci. A 11, 946–952 (2010). https://doi.org/10.1631/jzus.A1001115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1001115

Key words

CLC number

Navigation