Skip to main content
Log in

Recent advances in nonlinear control technologies for shape memory alloy actuators

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie, J., Chaillet, N., Lexcellent, C., 2002. An integrated shape memory alloy micro-actuator controlled by thermoelectric effect. Sensors and Actuators A: Physical, 99(3):297–303. [doi:10.1016/S0924-4247(01)00832-9]

    Article  Google Scholar 

  • Asada, H.H., Mascaro, S., 2002. Wet Shape Memory Alloy Actuators. MIT Home Automation and Healthcare Consortium, Final Report.

  • Asada, H.H., Cho, K.J., Au, S., 2000–2002. Large-scale Servo Control Using a Matrix Network for Driving a Large Number of SMA Actuators. Final Report of MIT Home Automation and Healthcare Consortium, (3–4):1–22.

  • Bhattacharyya, A., Lagoudas, D.C., Wang, Y.C., Kinra, V.K., 1995. On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater. Struct., 4(4):252–263. [doi:10.1088/0964-1726/4/4/005]

    Article  Google Scholar 

  • Briggs, J.P., Ostrowski, J.P., 2002. Experimental feed forward and feedback control of a one-dimensional SMA composite. Smart Mater. Struct., 11(1):9–23. [doi:10.1088/0964-1726/11/1/302]

    Article  Google Scholar 

  • Chen, H., Kubo, H., 1996. Martensitic phase transformations and shape memory alloys. Current Opinion in Solid States & Materials Science, 1(3):349–354. [doi:10.1016/S1359-0286(96)80024-6]

    Article  Google Scholar 

  • Choi, S.B., 2006. Position control of a single-link mechanism activated by shape memory alloy springs: experimental results. Smart Mater. Struct., 15(1):51–58. [doi:10.1088/0964-1726/15/1/034]

    Article  Google Scholar 

  • Choi, S.B., Han, Y.M., Kim, J.H., Cheong, C., 2001. Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics, 11(6):677–690. [doi:10.1016/S0957-4158(00)00034-9]

    Article  Google Scholar 

  • Dickinson, C.A., Wen, J.T., 1998. Feedback control using shape memory alloy actuators. J. Intelligent Material Systems and Structures, 9:242–250.

    Article  Google Scholar 

  • Ding, Z., Lagoudas, D.C., 1997. Solution behavior of the transient heat transfer problem in thermoelectric shape memory alloy actuators. The SIAM Journal of Applied Mathematics, 57(1):34–52. [doi:10.1137/S0036139995283663]

    Article  MATH  MathSciNet  Google Scholar 

  • Duerig, T., Pelton, A., Stöckel, D., 1999. An overview of Nitinol medical applications. Materials Science and Engineering A, 273–275(1–2):149–160. [doi:10.1016/S0921-5093(99)00294-4]

    Article  Google Scholar 

  • Dutta, S.M., Ghorbel, F.H., 2005. Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Transactions on Mechatronics, 10(2):189–197. [doi:10.1109/TMECH.2005.844709]

    Article  Google Scholar 

  • Duval, L., Noori, M.N., Hou, Z., Davoodi, H., Seelecke, S., 2000. Random vibration studies of an SDOF system with shape memory restoring force. Physica B: Condensed Matter, 275(1–3):138–141. [doi:10.1016/S0921-4526(99)00721-8]

    Article  Google Scholar 

  • Elahinia, M.H., Ashrafiuon, H., 2002. Nonlinear control of a shape memory alloy actuated manipulator. Transactions of the ASME, 124:566–575.

    Google Scholar 

  • Elahinia, M.H., Henneke, E., Ahmadian, M., 2004a. Stress-based Sliding Mode Control of a Rotary SMA-actuated Manipulator. Proc. SPIE 2004, Smart Structures and Materials/NDE, San Diego, CA.

  • Elahinia, M.H., Seigler, T.M., Leo, D.J., Ahmadian, M., 2004b. Nonlinear stress-based control of a rotary SMA-actuated manipulator. J. Intelligent Material Systems and Structures, 15(6):495–508. [doi:10.1177/1045389X04042277]

    Article  Google Scholar 

  • Etxebarria, V., Sanz, A., Lizarraga, I., 2005. Control of a lightweight flexible robotic arm using sliding modes. International Journal of Advanced Robotic Systems, 2(2):103–110.

    Google Scholar 

  • Fletcher, R., 1996. Force transduction materials for human technology interfaces. IBM Systems Journal, 35(3–4):630–638.

    Article  Google Scholar 

  • Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M., 2004. TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A: Physical, 112(2–3):395–408. [doi:10.1016/j.sna.2004.02.019]

    Article  Google Scholar 

  • Ghomshei, M.M., Tabandeh, N., Ghazavi, A., Gordaninejad, F., 2001a. A three-dimensional shape memory alloy/elastomer actuator. Composites Part B: Engineering, 32(5):441–449. [doi:10.1016/S1359-8368(01)00004-X]

    Article  Google Scholar 

  • Ghomshei, M.M., Khajepour, A., Tabandeh, N., Behdinan, K., 2001b. Finite element modeling of shape memory alloy composite actuators: theory and experiment. J. Intelligent Material Systems and Structures, 12(11):761–773. [doi:10.1177/104538901400438055]

    Article  Google Scholar 

  • Gorbet, R.B., Russell, R.A., 1995. A novel differential shape memory alloy actuator for position control. J. Robotica, 13:423–430.

    Article  Google Scholar 

  • Gorbet, R.B., Wang, D.W.L., 1998. A dissipativity approach to stability of a shape memory alloy position control system. IEEE Transactions on Control Systems Technology, 6(4):554–562. [doi:10.1109/87.701352]

    Article  Google Scholar 

  • Gorbet, R.B., Morris, K.A., Wang, D.W.L., 2001. Passivity-based stability and control of hysteresis in smart actuators. IEEE Transactions on Control Systems Technology, 9(1):5–16. [doi:10.1109/87.896741]

    Article  Google Scholar 

  • Gordaninejad, F., Wu, W., 2001. A two-dimensional shape memory/elastomer actuator. Int. J. Solids and Structure, 38(19):3393–3409. [doi:10.1016/S0020-7683(00)00265-1]

    Article  MATH  Google Scholar 

  • Grant, D., Hayward, V., 1997. Variable structure control of shape memory alloy actuators. IEEE Control Systems Magazine, 17(3):80–88. [doi:10.1109/37.588180]

    Article  Google Scholar 

  • Hornblower, V., 2002. Shape Memory Alloys in the Application of Brachiotherapy. S.O.T.A. Report.

  • Hull, P.V., Canfield, S.L., Carrington, C., 2004. A radiant energy-powered shape memory alloy actuator. Mechatronics, 14(7):757–775. [doi:10.1016/j.mechatronics.2004.01.008]

    Article  Google Scholar 

  • Icardi, U., 2001. Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments. Composites Part B: Engineering, 32(3):259–267. [doi:10.1016/S1359-8368(00)00062-7]

    Article  Google Scholar 

  • Ishii, H., Ting, K.L., 2004. SMA actuated compliant bistable mechanisms. Mechatronics, 14(4):421–437. [doi:10.1016/S0957-4158(03)00068-0]

    Article  Google Scholar 

  • Kahn, H., Huff, M.A., Heuer, A.H., 1998. The TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng., 8(3):213–221. [doi:10.1088/0960-1317/8/3/007]

    Article  Google Scholar 

  • Kumagai, A., Liu, T.I., Hozian, P., 2006. Control of shape memory alloy actuators with a neuro-fuzzy feed forward model element. J. Intelligent Manufacturing, 17(1):45–56. [doi:10.1007/s10845-005-5512-2]

    Article  Google Scholar 

  • Lagoudas, D.C., Garner, L.J., Rediniotis, O.K., Wilson N., 1999. Modeling and Experiments of the Hysteretic Response of an Active Hydrofoil Actuated by SMA Line Actuators. In: Smart Structures. Kluwer Academic Publishers, p. 153–162.

  • Lee, H.J., Lee, J.J., 2000. Evaluation of the characteristics of a shape memory alloy spring actuator. Smart Mater. Struct., 9(6):817–823. [doi:10.1088/0964-1726/9/6/311]

    Article  Google Scholar 

  • Lee, H.J., Lee, J.J., 2004. Time delay control of a shape memory alloy actuator. Smart Mater. Struct., 13(1):227–239. [doi:10.1088/0964-1726/13/1/027]

    Article  Google Scholar 

  • Lee, H.J., Lee, J.J., Kwon, D.S., Yoon, Y.S., 2001. Neural network based control of SMA actuator for the active catheter. Int. J. Human-friendly Welfare Robotic Systems, 2(2):40–45.

    Google Scholar 

  • Lee, C.J., Mavroidis, C., 2002. Analytical Dynamic Model and Experimental Robust and Optimal Control of a Shape-memory-alloy Bundle Actuator. Proceedings of the ASME IMECE, Paper IMECE2002-33439, New Orleans, LA, 71:491–498.

    Google Scholar 

  • Li, Y., Sasaki, M., Hane, K., 2005. A two-dimensional self aligning system driven by shape memory alloy actuators. Optics & Laser Technology, 37(2):147–149. [doi:10.1016/j.optlastec.2004.02.022]

    Article  Google Scholar 

  • Lim, S.C., Park, J.S., Choi, S.B., Park, Y.P., 2001. Non-contact start/stop motion control of HDD suspension using shape memory alloy actuators. Smart Mater. Struct., 10(5):1069–1077. [doi:10.1088/0964-1726/10/5/323]

    Article  Google Scholar 

  • Ma, N., Song, G., 2003. Control of shape memory alloy actuator using pulse width modulation. Smart Mater. Struct., 12(5):712–719. [doi:10.1088/0964-1726/12/5/007]

    Article  MathSciNet  Google Scholar 

  • Ma, N., Song, G., Lee, H.J., 2004. Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct., 13(4):777–783. [doi:10.1088/0964-1726/13/4/015]

    Article  Google Scholar 

  • Madill, D.R., Wang, D., 1998. Modeling and L2-stability of a shape memory alloy position control system. IEEE Transactions on Control Systems Technology, 6(4):473–481. [doi:10.1109/87.701339]

    Article  Google Scholar 

  • Majima, S., Kodama, K., Hasegawa, T., 2001. Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Transactions on Control Systems Technology, 9(1):54–59. [doi:10.1109/87.896745]

    Article  Google Scholar 

  • Mavroidis, C., 2002. Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1):1–32. [doi:10.1007/s00164-001-0018-6]

    Article  Google Scholar 

  • Mavroidis, C., Pfeiffer, C., Mosley, M., 2000. Conventional Actuators, Shape Memory Alloys, and Electrorheological fluids. Invited Chapter in Automation, Miniature Roboties and Sensors for Non-destructive Testing and Evaluation. The American Society for Nondestructive Testing, p.189–214.

  • Mechado, L.G., Savi, M.A., 2003. Medical applications of shape memory alloys. Review. Brazilian Journal of Medical and Biological Research, 36:683–691.

    Google Scholar 

  • Meier, H., Oelschlaeger, L., 2004. Numerical thermo-mechanical modeling of shape memory alloy wires. Materials Science and Engineering A, 378(1–2):484–489. [doi:10.1016/j.msea.2003.09.113]

    Article  Google Scholar 

  • Moallem, M., 2003. Deflection control of a flexible beam using shape memory alloy actuators. Smart Mater. Struct., 12(6):1023–1027. [doi:10.1088/0964-1726/12/6/022]

    Article  Google Scholar 

  • Moallem, M., Jun, L., 2005. Application of shape memory alloy actuators for flexure control: theory and experiments. IEEE/ASME Transactions on Mechatronics, 10(5):495–501. [doi:10.1109/TMECH.2005.856220]

    Article  Google Scholar 

  • Morgan, N.B., 2004. Medical shape memory alloy applications-the market and its products. Materials Science and Engineering A, 378(1–2):16–23. [doi:10.1016/j.msea.2003.10.326]

    Article  Google Scholar 

  • Mosley, M.J., Mavroidis, C., 2001. Experimental nonlinear dynamics of a shape memory alloy wire bundle actuator. J. Dynamic Systems, Measurement, and Control, 123(1):103–112. [doi:10.1115/1.1344243]

    Article  Google Scholar 

  • Mukherjee, R., Christian, T.F., Thiel, R.A., 1996. An actuation system for the control of multiple shape memory alloy actuators. Sensors and Actuators A: Physical, 55(2–3):185–192. [doi:10.1016/S0924-4247(97)80077-5]

    Article  Google Scholar 

  • Otsuka, K., Ren, X., 1999. Review: recent developments in the research of shape memory alloys. Intermetallics, 7(5):511–528. [doi:10.1016/S0966-9795(98)00070-3]

    Article  Google Scholar 

  • Potapov, P.L., Da Silva, E.P., 2000. Time response of shape memory alloy actuators. J. Intelligent Material Systems and Structures, 11(2):125–134. [doi:10.1106/XH1H-FH3Q-1YEX-4H3F]

    Article  Google Scholar 

  • Qiu, J., Tani, J., Osanai, D., Urushiyama, Y., Lewinnek, D., 2000. High-speed response of SMA actuators. Inter. J. of Applied Electromagnetics and Mechanics, 12:87–100.

    Google Scholar 

  • Rediniotis, O.K., Lagoudas, D.C., Garner, L.J., Wilson, N., 1998. Experiments and Analysis of an active Hydrofoil with SMA actuators. American Institute of Aeronautics and Astronautics Inc. AIAA Paper, p.98–0102.

  • Rediniotis, O.K., Lagoudas, D.C., Jun, H.Y., Allen, R.D., 2002. Fuel-powered compact SMA actuator. Proceedings of SPIE, 4698:441–453. [doi:10.1117/12.475087]

    Article  Google Scholar 

  • Reynaerts, D., Brussel, H.V., 1998. Design aspects of shape memory actuators. Mechatronics, 8(6):635–656. [doi:10.1016/S0957-4158(98)00023-3]

    Article  Google Scholar 

  • Rustighi, E., Brennan, M.J., Mace, B.R., 2005a. A shape memory alloy adaptive tuned vibration absorber: deisgn and implementation. Smart Mater. Struct., 14(1):19–28. [doi:10.1088/0964-1726/14/1/002]

    Article  Google Scholar 

  • Rustighi, E., Brennan, M.J., Mace, B.R., 2005b. Real-time control of a shape memory alloy adaptive tuned vibration absorber. Smart Mater. Struct., 14(6):1184–1195. [doi:10.1088/0964-1726/14/6/011]

    Article  Google Scholar 

  • Sadek, K., Bhattacharyya, A., Moussa, W., 2003. Effect of variable material properties and environmental conditions on thermomechanical phase transformations in shape memory alloy wires. Computational Materials Science, 27(4):493–506. [doi:10.1016/S0927-0256(03)00049-1]

    Article  Google Scholar 

  • Seelecke, S., Muller, I., 2004. Shape memory alloy actuators in smart structures: Modeling and simulation. Appl. Mech. Rev., 57(1):23–46. [doi:10.1115/1.1584064]

    Article  Google Scholar 

  • Selden, Brian., Cho, K., Asada, H.H., 2006. Segmented shape memory alloy actuators using hysteresis loop control. Smart Mater. Struct., 15(2):642–652. [doi:10.1088/0964-1726/15/2/048]

    Article  Google Scholar 

  • Shameli, E., Alasty, A., Salaarieh, H., 2005. Stability analysis and nonlinear control of a miniature shape memory alloy actuator for precise applications. Mechatronics, 15(4):471–486. [doi:10.1016/j.mechatronics.2004.10.001]

    Article  Google Scholar 

  • Shu, S.G., Lagoudas, D.C., Hughes, D., Wen, J.T., 1997. Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater. Struct., 6(3):265–277. [doi:10.1088/0964-1726/6/3/005]

    Article  Google Scholar 

  • Song, G., 2003. A neural network inverse model for a shape memory alloy wire actuator. J. Intelligent Material Systems and Structures, 14(6):371–377. [doi:10.1177/1045389X03034628]

    Article  Google Scholar 

  • Song, G., Ma, N., 2003. Control of shape memory alloy actuators using pulse-width pulse-frequency (PWPF). J. Intelligent Material Systems and Structures, 14(1):15–22. [doi:10.1177/1045389X03014001002]

    Article  Google Scholar 

  • Song, G., Kelly, B., Agrawal, B.N., 2000. Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct., 9(5):711–716. [doi:10.1088/0964-1726/9/5/316]

    Article  Google Scholar 

  • Song, G., Chaudhry, V., Batur, C., 2003. Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller. Smart Mater. Struct., 12(1):223–231. [doi:10.1088/0964-1726/12/2/310]

    Article  Google Scholar 

  • Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., Molfino, R., 2006. Training of a fuzzy logic controller using table lookup scheme for the control of SMA actuators. Int. J. Mathematical Sciences, 5(2):335–353.

    Google Scholar 

  • Stevens, J.M., Buckner, G.D., 2005. Actuation and control strategies for miniature robotic surgical systems. Journal of Dynamic Systems, Measurement, and Control, 127(4):537–549. [doi:10.1115/1.2098892]

    Article  Google Scholar 

  • Sujan, V.A., Dubowsky, S., 2004. Design of a lightweight hyper-redundant deployable binary manipulator. Journal of Mechanical Design, 126(1):29–39. [doi:10.1115/1.1637647]

    Article  Google Scholar 

  • Tan, X., Baras, J.S., 2005. Adaptive identification and control of hysteresis in smart materials. IEEE Transactions on Automatic Control, 50(6):827–839. [doi:10.1109/TAC.2005.849215]

    Article  MathSciNet  Google Scholar 

  • Tharayil, M.L., Alleyne, A.G., 2004. Modeling and control for smart mesoflap aeroelastic control. IEEE/ASME Transactions on Mechatronics, 9(1):30–39. [doi:10.1109/TMECH.2004.823852]

    Article  Google Scholar 

  • Turner, T.L., 2001. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites. Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, SPIE 4326-24, Newport Beach, CA, p.208–219.

  • van Humbeeck, J., 1999. Non-medical applications of shape memory alloys. Materials Science and Engineering A, 273–275(1–2):134–148. [doi:10.1016/S0921-5093(99)00293-2]

    Article  Google Scholar 

  • Webb, G.V., Lagoudas, D.C., Kurdila, A.J., 1998. Hysteresis modeling of SMA actuators for control applications. J. Intelligent Material Systems and Structures, 9(6):432–448.

    Article  Google Scholar 

  • Wijst, M.W.M.V.D., Schreurs, P.J.G., Veldpaus, F.E., 1997. Application of computed phase transformation power to control shape memory alloy actuators. Smart Mater. Struct., 6(2):190–198. [doi:10.1088/0964-1726/6/2/008]

    Article  Google Scholar 

  • Yao, Q., Jin, S., Ma, P.S., 2004. The micro trolley based on SMA and its control system. Journal of Intelligent and Robotic Systems, 39(2):199–208. [doi:10.1023/B:JINT.0000015400.24684.38]

    Article  Google Scholar 

  • Yesin, K.B., 2000. Design of Meso-Scale Robotic Systems with Miniature Actuators. University of Minnesota, Technical Report.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekumar, M., Singaperumal, M., Nagarajan, T. et al. Recent advances in nonlinear control technologies for shape memory alloy actuators. J. Zhejiang Univ. - Sci. A 8, 818–829 (2007). https://doi.org/10.1631/jzus.2007.A0818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0818

Key words

CLC number

Navigation