Skip to main content
Log in

A new confinement model for FRCM confined concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Confined concrete by means of FRCM (Fabric Reinforced Cementitious Matrix), also known as TRM (Textile Reinforced Mortar), may exhibit alternative stress–strain behaviors, depending on different variables including the unconfined concrete strength, concrete cross-section, fibers type and number of layers. Specifically, increasing the confinement level, the experimental observed response changes from a softening to a hardening one, after an initial peak that coincides roughly to that of the unconfined strength. To consider the peculiar behavior of FRCM-confined concrete, a new analytical model is proposed in this work. The formulation allows to calculate both the first and ultimate peak strength values, being more adherent to the real observed experimental behavior of FRCM-confined concrete members. The model is calibrated on a set of experimental data obtained by the same authors, and then its accuracy is validated on a different, larger dataset. Model performance indicators are compared to those calculated for other existing formulations, demonstrating the goodness of the new proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α :

Equation coefficient

ε c0 :

Unconfined axial strain at peak stress

ε cc ,1 :

Confined axial strain at first peak

ε ccu :

Confined axial strain at ultimate strength

ε f :

Strain capacity of fiber material

ε fu , rid :

Reduced strain capacity of fiber material

γ m :

Partial safety factor for material strength

η A :

Environmental conversion factor

ρ f :

Fiber reinforcement ratio

ρ mat :

Matrix reinforcement ratio

A c :

Concrete area

A e :

Effectively confined concrete area

b :

Short side of rectangular sections

D :

Diameter of circular sections or diagonal of rectangular ones

E f :

Fiber elastic modulus

f c0 :

Unconfined concrete strength

f cc :

Confined concrete strength

f cc,1 :

Confined concrete strength at first peak

f ccu :

Ultimate confined concrete strength

f cc,exp :

Experimental confined compressive strength

f cc,theo :

Predicted confined compressive strength

f l :

Confinement pressure

f l, eff :

Effective confinement pressure

f c,mat :

Matrix compressive strength

f f,mat :

Matrix flexural strength

h :

Long side of rectangular sections

k :

Equation coefficient

k a :

Shape factor (ACI549.4R)

k e :

Effectiveness coefficient

k f :

Fiber material effectiveness coefficient

k h :

Cross-section shape effectiveness coefficient

k m :

Matrix effectiveness coefficient (present paper)

k mat :

Matrix coefficient (CNR-DT 215)

k t :

Fabric thickness coefficient

K f :

Confinement jacket stiffness

K f, eff :

Effective confinement jacket stiffness

n f :

Number of layers

r c :

Corner radius of rounded edges for rectangular and square cross-sections

R 2 :

Coefficient of determination

RMSE:

Root mean square error

std:

Standard deviation

t mat :

Matrix layer thickness

t f :

Equivalent fabric thickness

References

  1. Di Ludovico M, Prota A, Manfredi G, Cosenza E (2008) Seismic strengthening of an under-designed RC structure with FRP. Earthq Eng Struct Dyn 37(1):141–162

    Article  Google Scholar 

  2. Toska K, Hofer L, Faleschini F, Zanini MA, Pellegrino C (2022) Seismic behavior of damaged RC columns repaired with FRCM composites. Eng Struct 262:114339

    Article  Google Scholar 

  3. Spoelstra MR, Monti G (1999) FRP-confined concrete model. J Compos Constr 3(3):143–150

    Article  Google Scholar 

  4. Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17(6–7):471–489

    Article  Google Scholar 

  5. Bisby LA, Dent AJ, Green MF (2005) Comparison of confinement models for FRP wrapped concrete. ACI Struct J 102(1):62–72

    Google Scholar 

  6. Pham TM, Hadi MN (2014) Confinement model for FRP confined normal-and high-strength concrete circular columns. Constr Build Mater 69:83–90

    Article  Google Scholar 

  7. Lim JC, Ozbakkaloglu T (2014) Confinement model for FRP-confined high-strength concrete. J Compos Constr 18(4):04013058

    Article  Google Scholar 

  8. Bournas DA, Lontou PV, Papanicolaou CG, Triantafillou TC (2007) Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns. ACI Struct J 104(6):740

    Google Scholar 

  9. Krevaikas TD (2019) Experimental study on carbon fiber textile reinforced mortar system as a means for confinement of masonry columns. Constr Build Mater 208:723–733

    Article  Google Scholar 

  10. Colajanni P, De Domenico F, Recupero A, Spinella N (2014) Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling. Constr Build Mater 52:375–384

    Article  Google Scholar 

  11. Triantafillou TC, Papanicolaou CG, Zissimopoulos P, Laourdekis T (2006) Concrete confinement with textile-reinforced mortar jackets. ACI Struct J 103(1):28

    Google Scholar 

  12. De Caso y Basalo FJ, Matta F, Nanni A (2012) Fiber reinforced cement-based composite system for concrete confinement. Constr Build Mater 32:55–65

    Article  Google Scholar 

  13. Ombres L, Mazzuca S (2017) Confined concrete elements with cement-based composites: confinement effectiveness and prediction models. J Compos Constr 21(3):04016103

    Article  Google Scholar 

  14. Fossetti M, Alotta G, Basone F, Macaluso G (2017) Simplified analytical models for compressed concrete columns confined by FRP and FRCM system. Mater Struct 50(6):1–20

    Article  Google Scholar 

  15. Napoli A, Realfonzo R (2020) Compressive strength of concrete confined with fabric reinforced cementitious matrix (FRCM): analytical models. Compos Part C Open Access 2:100032

    Article  Google Scholar 

  16. De Santis S, Hadad HA, De Caso y Basalo F, De Felice G, Nanni A (2018) Acceptance criteria for tensile characterization of fabric-reinforced cementitious matrix systems for concrete and masonry repair. J Compos Constr 22(6):04018048

    Article  Google Scholar 

  17. Nerilli F, Ferracuti B (2022) A tension stiffening model for FRCM reinforcements calibrated by means of an extended database. Compos Struct 284:115100

    Article  Google Scholar 

  18. Ameli Z, D’Antino T, Carloni C (2022) A new predictive model for FRCM-confined columns: a reflection on the composite behavior at peak stress. Constr Build Mater 337:127534

    Article  Google Scholar 

  19. Toska K, Faleschini F (2021) FRCM-confined concrete: monotonic versus Cyclic axial loading. Compos Struct 268:113931

    Article  Google Scholar 

  20. Toska K, Faleschini F, Zanini MA (2023) Confinement of concrete with FRCM: Influence of bond aspects under cyclic axial loading. Constr Build Mater 368:130432

    Article  Google Scholar 

  21. Teng JG, Jiang T (2008) 6 - Strengthening of reinforced concrete (RC) columns with fibre-reinforced polymer (FRP) composites. In: Hollaway LC, Teng JG (eds) Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites, Woodhead Publishing, pp 158–194. https://doi.org/10.1533/9781845694890.158

  22. Salesa A, Esteban Escaño LM, Barris C (2022) Confinement of FRP concrete columns: review of design guidelines and comparison with experimental results. Mater Constr (ART-2022–128005)

  23. Cascardi A, Micelli F, Aiello MA (2018) FRCM-confined masonry columns: experimental investigation on the effect of the inorganic matrix properties. Constr Build Mater 186:811–825

    Article  Google Scholar 

  24. Minafò G, Oddo MC, Cucchiara C, La Mendola L (2020) Effect of corner over-reinforcing strips on the compressive behaviour of TRM confined masonry columns. Mater Struct 53:1–14

    Article  Google Scholar 

  25. Gonzalez-Libreros J, Zanini MA, Faleschini F, Pellegrino C (2019) Confinement of low-strength concrete with fiber reinforced cementitious matrix (FRCM) composites. Compos B Eng 177:107407

    Article  Google Scholar 

  26. Di Ludovico M, Prota A, Manfredi G (2010) Structural upgrade using basalt fibers for concrete confinement. J Compos Constr 14(5):541–552

    Article  Google Scholar 

  27. Ombres L (2007) Confinement effectiveness in concrete strengthened with fiber reinforced cement based composite jackets. In: Proceedings of the, FRPRCS-8, 8th interantional symposium on fiber reinforced polymer reinforcement for concrete structures, T. C. Triantafillou, ed., Univ. of Patras, Patras, Greece

  28. Colajanni P, Fossetti M, Macaluso G (2014) Effects of confinement level, cross-section shape and corner radius on the cyclic behavior of CFRCM confined concrete columns. Constr Build Mater 55:379–389

    Article  Google Scholar 

  29. Donnini J, Spagnuolo S, Corinaldesi V (2019) A comparison between the use of FRP, FRCM and HPM for concrete confinement. Compos Part B Eng 160:586–594

    Article  Google Scholar 

  30. Thermou GE, Katakalos K, Manos G (2015) Concrete confinement with steel-reinforced grout jackets. Mater Struct 48:1355–1376

    Article  Google Scholar 

  31. Kahangi S, Baietti G, Quartarone G, Santandrea M, Carloni C (2020) Effect of steel- reinforced grout confinement on concrete square and cylindrical columns. ACI Struct J 117(5):97–108

    Google Scholar 

  32. García D, Alonso P, San-Jos´e J-T, Garmendia L, Perlot C (2010) Confinement of medium strength concrete cylinders with basalt Textile Reinforced Mortar, in: ICPIC 2010 – 13th Int. Congr. Polym. Concr., Portugal

  33. Trapko T (2013) Fibre Reinforced Cementitious Matrix confined concrete elements. Mater Des 44:382–391

    Article  Google Scholar 

  34. Colajanni P, Trapani FD, Fossetti M, Macaluso G, Papia M (2013) Cyclic axial testing of columns confined with fiber reinforced cementitious matrix, In: CICE 2012 6th international conference on fiber-reinforced polymer (FRP) composites in civil engineering, Rome

  35. Ombres L (2014) Concrete confinement with a cement based high strength composite material. Compos Struct 109:294–304

    Article  Google Scholar 

  36. Ortlepp R, Lorenz A, Curbach M (2011) Geometry effects onto the load bearing capacity of columns heads strengthened with TRC, in, PRAGUE

  37. Ates AO, Khoshkholghi S, Tore E, Marasli M, Ilki A (2019) Sprayed glass fiber- reinforced mortar with or without basalt textile reinforcement for jacketing of low-strength concrete prisms. J Compos Constr 23:04019003

    Article  Google Scholar 

  38. Thermou GE, Hajirasouliha I (2018) Compressive behaviour of concrete columns confined with steel-reinforced grout jackets. Compos Part B Eng 138:222–231

    Article  Google Scholar 

  39. Bhuvaneshwari P, Mohan KSR, Kirthiga R (2014) Stress strain behaviour of concrete element retrofitted using organic and inorganic binders. Asian J Appl Sci 7(4):215–223

    Article  Google Scholar 

  40. Consiglio Nazionale delle Ricerche, CNR DT 215-2018 (2018) Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l’utilizzo di Compositi Fibrorinforzati a Matrice Inorganica. In Italian

  41. ACI 549.4R-20 (2020) Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) and steel reinforced grout (SRG) systems for repair and strengthening concrete structures

  42. Cascardi A, Longo F, Micelli F, Aiello MA (2017) Compressive strength of confined column with fiber reinforced mortar (FRM): new design-oriented-models. Constr Build Mater 156:387–401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KT: conceptualization, methodology, data curation, investigation, formal analysis, visualization, writing. FF: conceptualization, methodology, investigation, writing, supervision, project administration.

Corresponding author

Correspondence to Klajdi Toska.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Collected dataset of FRCM-confined concrete specimens

Appendix: Collected dataset of FRCM-confined concrete specimens

References

Specimen

D (mm)

b (mm)

h (mm)

rc (mm)

tmat (mm)

fc,mat (MPa)

nf (–)

Fiber (–)

tf (mm)

Ef (GPa)

ef (–)

fc0 (MPa)

fcc (MPa)

Colajanni et al. [28]

CF2M

200

3

31

2

C

0.047

240

0.02

16.44

20.71

 

CF3M

200

3

31

3

C

0.047

240

0.02

16.44

23.84

 

S15F2M

200

200

15

3

31

2

C

0.047

240

0.02

16.48

19.78

 

S15F4M

200

200

15

3

31

4

C

0.047

240

0.02

16.48

23.24

 

S30F2M

200

200

30

3

31

2

C

0.047

240

0.02

16.48

19.12

 

S30F4M

200

200

30

3

31

4

C

0.047

240

0.02

16.48

23.07

 

R15F2M

200

400

15

3

31

2

C

0.047

240

0.02

14.99

19.34

 

R15F4M

200

400

15

3

31

4

C

0.047

240

0.02

14.99

20.84

 

R30F2M

200

400

30

3

31

2

C

0.047

240

0.02

14.99

18.89

 

R30F4M

200

400

30

3

31

4

C

0.047

240

0.02

14.99

21.74

Bournas et al. [8]

U_M4

200

200

25

2

22

4

C

0.095

225

0.017

15.28

26.60

 

U_M6

200

200

25

2

22

6

C

0.095

225

0.017

15.28

31.55

Colajanni et al. [10]

CA_2L

154

3.5

16

2

PBO

0.046

206

0.015

24.20

31.23

 

CA_3L

154

3.5

16

3

PBO

0.046

206

0.015

24.20

36.57

 

CB_2L

200

3.5

16

2

PBO

0.046

206

0.015

24.40

31.17

 

CB_3L

200

3.5

16

3

PBO

0.046

206

0.015

24.40

33.55

 

SB_2L

200

200

20

3.5

16

2

PBO

0.046

206

0.015

25.50

28.27

 

SB_3L

200

200

20

3.5

16

3

PBO

0.046

206

0.015

25.50

31.63

Donnini et al. [29]

M15_CF

140

4

17

2

C

0.048

203

0.015

11.40

13.65

 

M45_PBO

140

4

50

2

PBO

0.046

206

0.025

11.40

17.71

 

M45_CF

140

4

50

2

C

0.048

203

0.015

11.40

13.66

Thermou et al. [30]

A3 × 2h1

150

5

22

1

S

0.562

230

0.021

15.12

22.26

 

A3 × 2m1

150

3.5

22

1

S

0.124

230

0.021

15.12

25.66

 

A3 × 2l1

150

3.5

22

1

S

0.062

230

0.021

15.12

22.80

 

A12 × h1

150

5

22

1

S

0.562

230

0.019

15.12

25.30

 

A12 × m1

150

3.5

22

1

S

0.124

230

0.019

15.12

26.64

 

A12 × l1

150

3.5

22

1

S

0.062

230

0.019

15.12

22.55

 

B3 × 2m2

150

3.5

22

1

S

0.124

230

0.021

26.20

36.07

 

B3 × 2l2

150

3.5

22

1

S

0.062

230

0.021

26.20

35.93

 

B12 × m2

150

3.5

22

1

S

0.124

230

0.019

26.20

40.42

 

B12 × l2

150

3.5

22

1

S

0.062

230

0.019

26.20

36.21

Kahangi et al. [31]

SQ-I-2-CE-LD-1L

150

150

25

3.5

50

1

S

0.084

190

0.02

19.88

25.23

 

SQ-I-2-CE-LD-2L

150

150

25

3.5

50

2

S

0.084

190

0.02

19.88

26.80

 

SQ-I-2-CE-MD-1L

150

150

25

3.5

50

1

S

0.169

190

0.02

19.88

25.38

 

SQ-II-6-CE-LD-1L

250

250

25

3.5

50

1

S

0.084

190

0.02

18.15

19.18

 

SQ-II-6-CE-LD-2L

250

250

25

3.5

50

2

S

0.084

190

0.02

18.15

21.28

 

SQ-II-3-CE-MD-1L

250

250

25

3.5

50

1

S

0.169

190

0.02

18.15

22.05

 

C-III-8-CE-LD-1L

150

3.5

50

1

S

0.084

190

0.02

20.47

25.40

 

C-III-8-CE-LD-2L

150

3.5

50

2

S

0.084

190

0.02

20.47

30.40

 

C-III-8-CE-MD-1L

150

3.5

50

1

S

0.169

190

0.02

20.47

26.87

Triantafillou et al. [11]

A_MI2

150

2

9

2

C

0.047

225

0.015

15.24

20.77

 

A_MII2

150

2

31

2

C

0.047

225

0.015

15.24

23.88

 

A_MI3

150

2

9

3

C

0.047

225

0.015

15.24

26.50

 

A_MII3

150

2

31

3

C

0.047

225

0.015

15.24

27.00

 

B_MII2

150

2

31

2

C

0.047

225

0.015

21.81

27.36

 

B_MII3

150

2

31

3

C

0.047

225

0.015

21.81

32.44

 

C_MII2

250

250

15

2

31

2

C

0.047

225

0.015

14.25

20.00

 

C_MII4

250

250

15

2

31

4

C

0.047

225

0.015

14.25

21.56

Garcìa et al. [32]

M1

150

5

32

1

B

0.043

52

0.022

21.80

26.20

 

M2

150

5

32

2

B

0.043

52

0.022

21.80

27.21

 

C1

150

5

22

1

B

0.043

52

0.022

21.80

28.67

 

C2

150

5

22

2

B

0.043

52

0.022

21.80

28.78

Di Ludovico et al. [26]

S3

150

4

30

2

G

0.043

72

0.02

15.52

22.35

 

S13

150

4

30

2

G

0.043

72

0.02

17.83

23.00

 

S10–S11–S12

150

4

30

1

G

0.043

72

0.02

17.83

20.03

 

S4

150

4

30

1

B

0.046

91

0.02

15.52

22.50

 

S14–S15

150

4

30

1

B

0.046

91

0.02

17.83

25.32

 

S5

150

4

30

2

B

0.046

91

0.02

15.52

22.81

 

S16–S17

150

4

30

2

B

0.046

91

0.02

17.83

28.35

 

S6

150

4

30

1

B

0.046

91

0.02

15.52

19.71

 

S18–S19

150

4

30

1

B

0.046

91

0.02

17.83

22.91

 

S

150

4

30

2

B

0.046

91

0.02

15.52

22.50

 

S20–S21

150

4

30

2

B

0.046

91

0.02

17.83

26.75

Basalo et al. [12]

LDG-A

152

4

31

2

G

0.21

72

0.045

20.40

26.85

 

LDG-H

152

4

31

2

G

0.21

72

0.045

20.40

30.00

 

HDG-A

152

4

31

2

G

0.366

72

0.045

20.40

24.50

 

HDG-H

152

4

31

2

G

0.366

72

0.045

20.40

30.00

 

BGP-A

152

4

31

2

B

0.046

74

0.047

20.40

28.80

 

BGP-H

152

4

31

2

B

0.046

74

0.047

20.40

31.80

 

1B

152

4

31

1

B

0.246

77

0.044

21.70

26.30

 

2B

152

4

31

2

B

0.246

77

0.044

21.70

35.52

 

2U

152

4

31

2

B

0.246

77

0.044

21.70

33.93

 

4B

152

4

31

4

B

0.246

77

0.044

21.70

47.90

Trapko et al. [33]

20M1

113

4

29

1

PBO

0.0455

206

0.0215

22.62

32.57

 

20M2

113

4

29

2

PBO

0.0455

206

0.0215

22.62

42.72

 

20M3

113

4

29

3

PBO

0.0455

206

0.0215

22.62

56.94

Colajanni et al. [34]

CF3M

200

3

38

3

C

0.047

240

0.02

15.10

21.77

 

S15F4M

200

200

15

3

38

4

C

0.047

240

0.02

16.30

22.50

 

S30F4M

200

200

30

3

38

4

C

0.047

240

0.02

16.30

22.00

 

R15F2M

200

400

15

3

38

2

C

0.047

240

0.02

16.40

20.60

 

R30F2M

200

400

30

3

38

2

C

0.047

240

0.02

16.40

20.10

Ombres et al. [35]

CRP1-I

150

3

30.4

1

PBO

0.0455

270

0.02

15.40

24.69

 

CRP2-I

150

3

30.4

2

PBO

0.0455

270

0.02

15.40

35.00

 

CRP3-I

150

3

30.4

3

PBO

0.0455

270

0.02

15.40

41.45

 

CRP4-I

150

3

30.4

4

PBO

0.0455

270

0.02

15.40

49.24

 

CRP1-II

150

3

30.4

1

PBO

0.0455

270

0.02

29.26

43.55

 

CRP2-II

150

3

30.4

2

PBO

0.0455

270

0.02

29.26

47.00

 

CRP3-II

150

3

30.4

3

PBO

0.0455

270

0.02

29.26

56.10

 

CRP4-II

150

3

30.4

4

PBO

0.0455

270

0.02

29.26

56.23

Ortlepp et al. [36]

B1

150

150

0

3

67

1

G

0.06

74.45

0.02

29.00

33.00

 

B2

150

150

15

3

67

1

G

0.06

74.45

0.02

27.00

34.00

 

B3

150

150

30

3

67

1

G

0.06

74.45

0.02

27.00

33.00

 

B4

150

150

45

3

67

1

G

0.06

74.45

0.02

27.00

32.00

 

B5

150

150

60

3

67

1

G

0.06

74.45

0.02

27.00

35.00

 

B6

150

3

67

1

G

0.06

74.45

0.02

26.00

35.00

 

B7

100

100

30

3

67

1

G

0.06

74.45

0.02

27.00

35.00

 

B8

300

300

30

3

67

1

G

0.06

74.45

0.02

27.00

40.00

 

C1

150

150

0

3

67

1

C(imp)

0.0617

223

0.0167

29.00

33.00

 

C2

150

150

15

3

67

1

C(imp)

0.0617

223

0.0167

27.00

34.00

 

C3

150

150

30

3

67

1

C(imp)

0.0617

223

0.0167

27.00

35.00

 

C4

150

150

45

3

67

1

C(imp)

0.0617

223

0.0167

27.00

36.00

 

C5

150

150

60

3

67

1

C(imp)

0.0617

223

0.0167

27.00

37.00

 

C6

150

3

67

1

C(imp)

0.0617

223

0.0167

26.00

39.00

 

C7

100

100

30

3

67

1

C(imp)

0.0617

223

0.0167

27.00

37.00

 

C8

300

300

30

3

67

1

C(imp)

0.0617

223

0.0167

27.00

41.00

 

D1

150

150

0

3

67

1

C(imp)

0.18

204

0.0167

29.00

33.00

 

D2

150

150

15

3

67

1

C(imp)

0.18

204

0.0167

27.00

34.00

 

D3

150

150

30

3

67

1

C(imp)

0.18

204

0.0167

27.00

40.00

 

D4

150

150

45

3

67

1

C(imp)

0.18

204

0.0167

27.00

46.00

 

D5

150

150

60

3

67

1

C(imp)

0.18

204

0.0167

27.00

52.00

 

D6

150

3

67

1

C(imp)

0.18

204

0.0167

26.00

57.00

 

D7

100

100

30

3

67

1

C(imp)

0.18

204

0.0167

27.00

57.00

 

D8

300

300

30

3

67

1

C(imp)

0.18

204

0.0167

27.00

38.00

Ates et al. [37]

C-BG-1

150

12.5

43.5

1

B

0.115

32

0.05

9.00

15.40

 

C-BG-3

150

6.25

43.5

3

B

0.115

32

0.05

9.00

17.10

 

S-BG-1

200

200

30

12.5

43.5

1

B

0.115

32

0.05

8.50

13.50

 

S-BG-3

200

200

30

6.25

43.5

3

B

0.115

32

0.05

8.50

14.70

 

R1.5-BG-1

200

300

30

12.5

43.5

1

B

0.115

32

0.05

9.60

12.70

 

R1.5-BG-3

200

300

30

6.25

43.5

3

B

0.115

32

0.05

9.60

12.60

 

R2-BG-1

200

400

30

12.5

43.5

1

B

0.115

32

0.05

10.00

12.70

 

R2-BG-3

200

400

30

6.25

43.5

3

B

0.115

32

0.05

10.00

13.60

 

R3-BG-1

200

600

30

12.5

43.5

1

B

0.115

32

0.05

10.50

11.60

 

R3-BG-3

200

600

30

6.25

43.5

3

B

0.115

32

0.05

10.50

12.00

Thermou and Hajirasouliha [38]

A1#1

150

3

22

1

S

0.062

110

0.019

23.14

28.75

 

A2#1

150

3

22

1

S

0.062

120

0.021

23.14

32.30

 

A2#2

150

3

22

2

S

0.062

120

0.021

23.14

38.56

 

A3#1

150

3

4

1

S

0.062

110

0.019

23.14

29.80

 

A4#1

150

3

4

1

S

0.062

120

0.021

23.14

30.12

 

A4#2

150

3

4

2

S

0.062

120

0.021

23.14

34.02

 

A5#1

150

3

20

1

S

0.062

110

0.019

23.14

33.07

 

A6#1

150

3

20

1

S

0.062

120

0.021

23.14

32.15

 

A6#2

150

3

20

2

S

0.062

120

0.021

23.14

38.02

 

B1#1

150

3

22

1

S

0.062

110

0.019

16.62

30.45

 

B3#1

150

3

4

1

S

0.062

110

0.019

16.62

26.64

 

B5#1

150

3

20

1

S

0.062

110

0.019

16.62

28.32

 

C7#1

150

3

55

1

S

0.0845

190

0.015

20.73

31.36

 

C8#1

150

3

55

1

S

0.0845

190

0.015

20.73

34.10

 

C7#2

150

3

55

2

S

0.0845

190

0.015

20.73

40.24

 

C8#2

150

3

55

2

S

0.0845

190

0.015

20.73

44.63

 

D8#1

150

3

55

1

S

0.0845

190

0.015

18.27

27.68

 

D7#2

150

3

55

2

S

0.0845

190

0.015

18.27

36.44

 

D9#1

150

3

55

1

S

0.254

190

0.015

18.27

40.64

 

D10#2

150

3

55

2

S

0.254

190

0.015

18.27

53.53

 

E8#1

150

3

55

1

S

0.0845

190

0.015

29.98

40.51

 

E7#2

150

3

55

2

S

0.0845

190

0.015

29.98

45.21

 

E9#1

150

3

55

1

S

0.254

190

0.015

29.98

45.87

 

E10#2

150

3

55

2

S

0.254

190

0.015

29.98

64.19

Ombres [27]

CR-2

150

3

22.5

2

C

0.047

240

0.0142

19.52

26.88

 

CR-3

150

3

22.5

3

C

0.047

240

0.0142

19.52

31.42

 

CR-4

150

3

22.5

4

C

0.047

240

0.0142

19.52

35.08

 

R-Q11

150

150

30

3

22.5

1

C

0.047

240

0.0142

17.42

20.02

 

R-Q12

150

150

30

3

22.5

2

C

0.047

240

0.0142

17.42

21.46

 

R-Q24

150

150

30

3

22.5

3

C

0.047

240

0.0142

17.42

26.90

 

R-Q27

150

150

30

3

22.5

4

C

0.047

240

0.0142

17.42

29.73

 

R-T1-1-R1

150

300

30

3

22.5

1

C

0.047

240

0.0142

27.05

28.50

 

R-T1-1-R3

150

300

30

3

22.5

2

C

0.047

240

0.0142

27.05

30.53

 

R-T1-1-R5

150

300

30

3

22.5

3

C

0.047

240

0.0142

27.05

33.33

Gonzalez–Libreros et al. [25]

CCML1D0-1

150

4

25

1

C

0.047

240

0.018

36.80

40.10

 

CCML1D0-2

150

150

20

4

22.9

2

C

0.047

240

0.018

17.50

21.80

 

CCML1D0-3

150

150

20

4

22.9

2

G

0.05

70

0.03

17.50

18.70

Bhuvaneshwari et al. [40]

20M1

113

5

29

1

PBO

0.046

270

0.0215

22.60

32.57

 

20M2

113

5

29

2

PBO

0.046

270

0.0215

22.60

42.72

 

20M3

113

5

29

3

PBO

0.046

270

0.0215

22.60

56.94

Ombres [13]

C1-1-20

150

3

30.4

1

PBO

0.046

270

0.0215

33.83

35.80

 

CIII-1-20

150

3

30.4

1

PBO

0.046

270

0.0215

52.39

54.90

 

CIII-2-20

150

3

30.4

2

PBO

0.046

270

0.0215

52.39

51.45

 

CIII-3-20

150

3

30.4

3

PBO

0.046

270

0.0215

52.39

55.94

Toska and Faleschini [19]

C_C1_C1

150

3.5

21.56

1

C

0.047

240

0.018

13.79

14.85

C_C2_C1

150

3.5

21.56

2

C

0.047

240

0.018

13.87

15.91

C_C3_C

150

3.5

21.56

3

C

0.047

240

0.018

18.90

21.82

C_C4_C

150

3.5

21.56

4

C

0.047

240

0.018

18.90

25.54

C_G1_C

150

3.5

21.56

1

G

0.05

70

0.03

19.36

19.84

C_G2_C

150

3.5

21.56

2

G

0.05

70

0.03

19.36

20.77

S_C2_C

150

150

20

3.5

21.56

2

C

0.047

240

0.018

17.45

18.70

R1_C2_C

100

150

20

3.5

21.56

2

C

0.047

240

0.018

18.45

19.38

R2_C2_M

150

250

20

3.5

21.56

2

C

0.047

240

0.018

12.34

12.98

Toska and Faleschini [20]

C200_1D_C

150

3.5

25.00

2

C

0.047

240

0.018

22.45

26.72

C200_2D_C

150

3.5

22.47

2

C

0.061

240

0.018

22.45

26.50

C200_1D_D

150

3.5

22.63

2

C

0.047

240

0.018

22.45

27.46

C300_1D_C

150

3.5

21.29

2

C

0.047

240

0.018

22.45

26.26

C200_1FC_C

150

3.5

26.36

2

C

0.047

240

0.018

22.45

26.59

C200_1ER_C

150

3.5

25.87

2

C (imp)

0.047

240

0.018

22.45

28.38

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toska, K., Faleschini, F. A new confinement model for FRCM confined concrete. Mater Struct 56, 98 (2023). https://doi.org/10.1617/s11527-023-02186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02186-w

Keywords

Navigation