Skip to main content

Advertisement

Log in

Alkali-activated basalt powder/slag systems: compressive strength and microstructural characterization

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates the potential use of basalt powder as a sole precursor or blended in high amounts in slag-based alkali-activated systems. Eight alkali-activated mixes are prepared and comprehensively analyzed to determine the compressive strength development and microstructural characterization of basalt powder-based and basalt powder/slag blends activated by sodium hydroxide and a mixture of sodium hydroxide and sodium silicate. The mixes are characterized from a microstructural viewpoint via X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and scanning electron microscopy analyses. The results show that while basalt powder-based mixes have low compressive strength values, ranging between 2 and 9 MPa, basalt powder/slag blend mixes exhibit a moderate compressive strength, i.e., 20 MPa at 28 days. Furthermore, sodium-silicate-activated basalt powder/slag blend mixes achieve high compressive strengths at early and further ages. The low strength values of the basalt powder-based mixes are attributed to the low concentration of reactive species and lack of Ca2+ ions in the medium, while the high compressive strength of the blended mixes is mainly associated with the formation of calcium aluminosilicate hydrate [C–(A)–S–H] or Na-enriched calcium sodium aluminosilicate hydrate [C–(N)–A–S–H] gel phases along with the calcic-plagioclase, which afford a denser microstructure. The obtained results show that basalt powder can be used in high concentrations, i.e., 50%, in alkali-activated systems, and basalt powder/slag blends can be a feasible, alternative binder system for use as a structural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Bondar D, Lynsdale CJ, Milestone NB (2013) Alkali-activated natural pozzolan concrete as new construction material. ACI Mater J 110:331

    Google Scholar 

  2. Davidovits J (2008) Geopolymer chemistry and applications. Institute Geopolymer, Saint-Quentin

    Google Scholar 

  3. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–3233. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  4. Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016) Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr Build Mater 124:606–614. https://doi.org/10.1016/j.conbuildmat.2016.07.141

    Article  Google Scholar 

  5. Pilehvar S, Szczotok AM, Rodríguez JF, Valentini L, Lanzón M, Pamies R, Kjøniksen A-L (2019) Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Constr Build Mater 200:94–103. https://doi.org/10.1016/j.conbuildmat.2018.12.057

    Article  Google Scholar 

  6. Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383. https://doi.org/10.1016/j.matdes.2011.10.005

    Article  Google Scholar 

  7. Lemougna PN, ChinjeMelo UF, Delplancke M-P, Rahier H (2014) Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram Int 40(1):811–820. https://doi.org/10.1016/j.ceramint.2013.06.072

    Article  Google Scholar 

  8. Barrie E, Cappuyns V, Vassilieva E, Adriaens R, Hollanders S, Garcés D, Paredes C, Pontikes Y, Elsen J, Machiels L (2015) Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from Gold extraction in Ecuador. Appl Clay Sci 109–110:95–106. https://doi.org/10.1016/j.clay.2015.02.025

    Article  Google Scholar 

  9. Tchakouté HK, Kong S, Djobo JNY, Tchadjié LN, Njopwouo D (2015) A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceram Int 41(10):12568–12577. https://doi.org/10.1016/j.ceramint.2015.06.073

    Article  Google Scholar 

  10. Erdogan ST (2015) Properties of ground perlite geopolymer mortars. J Mater Civ Eng 27:04014210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001172

    Article  Google Scholar 

  11. Kani EN, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34(1):25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007

    Article  Google Scholar 

  12. Dali Bondar CJ, Lynsdale NB, Milestone N, Hassani AAR (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos 33(2):251–260. https://doi.org/10.1016/j.cemconcomp.2010.10.021

    Article  Google Scholar 

  13. Esaifan M, Hourani M, Khoury H, Rahier H, Wastiels J (2017) Synthesis of hydroxysodalite zeolite by alkali-activation of basalt powder rich in calc-plagioclase. Adv Powder Technol 28(2):473–480. https://doi.org/10.1016/j.apt.2016.11.002

    Article  Google Scholar 

  14. Gill R (2011) Igneous rocks and processes: a practical guide. John Wiley & Sons Ltd

    Google Scholar 

  15. Unčík S, Kmecová V (2013) The effect of basalt powder on the properties of cement composites. Proc Eng 65:51–56. https://doi.org/10.1016/j.proeng.2013.09.010

    Article  Google Scholar 

  16. Marfil SA, Maiza PJ, Bengochea AL, Sota JD, Batic OR (1998) Relationships between SiO2, Al2O3, Fe2O3, CaO, K2O, and expansion in the determination of the alkali reactivity of basaltic rocks. Cem Concr Res 28(2):189–196. https://doi.org/10.1016/S0008-8846(97)00249-4

    Article  Google Scholar 

  17. Korkanç M, Tuğrul A (2005) Evaluation of selected basalts from the point of alkali–silica reactivity. Cem Concr Res 35(3):505–512. https://doi.org/10.1016/j.cemconres.2004.06.013

    Article  Google Scholar 

  18. Çopuroğlu O, Andiç-Çakir Ö, Broekmans MATM, Kühnel R (2009) Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey. Mater Charact 60(7):756–766. https://doi.org/10.1016/j.matchar.2008.09.011

    Article  Google Scholar 

  19. Saraya ME-SI, El-Fadaly E (2017) Preliminary study of alkali activation of basalt: effect of NaOH concentration on geopolymerization of basalt. J Mater Sci Chem Eng 05(11):58–76. https://doi.org/10.4236/msce.2017.511006

    Article  Google Scholar 

  20. Venyite P, Makone EC, Kaze RC, Nana A, Nemaleu JGD, Kamseu E, Melo UC, Leonelli C (2022) Effect of combined metakaolin and basalt powder additions to laterite-based geopolymers activated by rice husk ash (RHA)/NaOH solution. SILICON 14(4):1643–1662. https://doi.org/10.1007/s12633-021-00950-7

    Article  Google Scholar 

  21. Ke G, Shen H, Yang P (2019) Synthesis of X-Zeolite from waste basalt powder and its influencing factors and synthesis mechanism. Materials 12:3895. https://doi.org/10.3390/ma12233895

    Article  Google Scholar 

  22. Akturk B, Kızılkanat, AB, Kabay, N, Akyuncu, V (2021) Utilization of basalt powder as geopolymeric binder. In: International Conference Cement - Based Materials Tailored a Sustainable Future, Istanbul, pp. 491–497. https://www.researchgate.net/profile/Busra-Akturk-3/publication/357484979_Utilization_of_Basalt_Powder_as_Geopolymeric_Binder/links/61d08405da5d105e5511e3e4/Utilization-of-Basalt-Powder-as-Geopolymeric-Binder.pdf

  23. T.S. Institute (2009) TS 25-Turkish Standards-Natural pozzolan (Trass) for use in cement and concrete - Definitions, requirements and conformity criteria, Ankara

  24. BS E-196-2 (2013) Methods of testing cement Chemical analysis of cement

  25. ASTM C1437 (2016) Standard test method for flow of hydraulic cement mortar. Am Soc Test Mater. https://doi.org/10.1520/C1437-15.2

    Article  Google Scholar 

  26. ASTM C191 (2013) Standard test method for time of setting of hydraulic cement by Vicat Needle. ASTM Int. https://doi.org/10.1520/C0191-13.2

    Article  Google Scholar 

  27. ASTM C109, ASTM C109/C109M-21, standard test method for compressive strength of hydraulic cement mortars ( Using 2-in. or [ 50-mm ] Cube Specimens ) 1, ASTM Int. West Conshohocken, PA (2021). https://doi.org/10.1520/C0109

  28. Fang G, Ho WK, Wenlin T, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008

    Article  Google Scholar 

  29. Bakharev T, Sanjayan JG, Cheng Y-B (2000) Effect of admixtures on properties of alkali-activated slag concrete. Cem Concr Resear 30(9):1367–1374. https://doi.org/10.1016/S0008-8846(00)00349-5

    Article  Google Scholar 

  30. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001

    Article  Google Scholar 

  31. Aydın S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos Part B Eng 57:166–172. https://doi.org/10.1016/j.compositesb.2013.10.001

    Article  Google Scholar 

  32. Rajaokarivony-Andriambololona S,Thomassin JH, Baillif P, Touray JC (1990) Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 °C: structure, composition and origin of the hydrated layer. J Mater Sci 25:2399–2410

    Article  Google Scholar 

  33. Fernandez-Jimenez A, Puertas F (2001) Setting of alkali-activated slag cement. Influence of activator nature. Adv Cem Res 13(3):115–121. https://doi.org/10.1680/adcr.13.3.115.39288

    Article  Google Scholar 

  34. Laskar SM, Talukdar S (2017) Development of ultrafine slag-based geopolymer mortar for use as repairing mortar. J Mater Civ Eng 29:04016292. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001824

    Article  Google Scholar 

  35. Malkawi AB, Nuruddin MF, Fauzi A, Almattarneh H, Mohammed BS (2016) Effects of alkaline solution on properties of the HCFA geopolymer mortars. Proc Eng 148:710–717. https://doi.org/10.1016/j.proeng.2016.06.581

    Article  Google Scholar 

  36. Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboğa R, Toprak U (2014) Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 72:283–292. https://doi.org/10.1016/j.conbuildmat.2014.09.021

    Article  Google Scholar 

  37. Temuujin J, Williams RP, van Riessen A (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Technol 209(12–13):5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016

    Article  Google Scholar 

  38. Li N, Shi C, Zhang Z (2019) Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos Part B Eng 171:34–45. https://doi.org/10.1016/j.compositesb.2019.04.024

    Article  Google Scholar 

  39. Lee NK, Lee HK (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107

    Article  Google Scholar 

  40. Mustafa Al Bakri AM, Karamudin H, Binhussain M, Rafiza AR, Zarina Y (2012) Effect of Na2SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer. ACI Mater J 109:503–508

    Google Scholar 

  41. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90(6):2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018

    Article  Google Scholar 

  42. Akturk B, Kizilkanat AB, Kabay N (2019) Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes. Constr Build Mater 212:388–399. https://doi.org/10.1016/j.conbuildmat.2019.03.328

    Article  Google Scholar 

  43. Xu H, van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  44. Escalante-García JI, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, Mendoza-Suarez G (2003) Hydration products and reactivity of blast-furnace slag activated by various alkalis. J Am Ceram Soc 86:2148–2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x

    Article  Google Scholar 

  45. Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310. https://doi.org/10.1016/j.cemconres.2010.11.016

    Article  Google Scholar 

  46. Abdalqader AF, Jin F, Al-Tabbaa A (2016) Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J Clean Prod 113:66–75. https://doi.org/10.1016/j.jclepro.2015.12.010

    Article  Google Scholar 

  47. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (2004) Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82:742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

    Article  Google Scholar 

  48. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A (2007) FTIR study of the sol–gel synthesis of cementitious gels: C-S–H and N–A–S–H. J Sol-Gel Sci Technol 45:63–72. https://doi.org/10.1007/s10971-007-1643-6

    Article  Google Scholar 

  49. Yuan B, Yu QL, Brouwers HJH (2017) Time-dependent characterization of Na2CO3 activated slag. Cem Concr Compos 84:188–197. https://doi.org/10.1016/j.cemconcomp.2017.09.005

    Article  Google Scholar 

  50. Sitarz M, Handke M, Mozgawa W (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectroch Acta Part A Mol Biomol Spectr 56(9):1819–1823. https://doi.org/10.1016/S1386-1425(00)00241-9

    Article  Google Scholar 

  51. Sitarz M, Handke M, Mozgawa W, Galuskin E, Galuskina I (2000) The non-ring cations influence on silicooxygen ring vibrations. J Mol Struct 555(1–3):357–362. https://doi.org/10.1016/S0022-2860(00)00621-9

    Article  Google Scholar 

  52. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A (2008) FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H. J Sol-Gel Sci Technol 45:63–72. https://doi.org/10.1007/s10971-007-1643-6

    Article  Google Scholar 

  53. Lecomte I, Henrist C, Liégeois M, Maseri F, Rulmont A, Cloots R (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26:3789–3797. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

    Article  Google Scholar 

  54. GarcíaLodeiro I, Macphee DE, Palomo A, Fernández-Jiménez A (2009) Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem Concr Res 39(3):147–153. https://doi.org/10.1016/j.cemconres.2009.01.003

    Article  Google Scholar 

  55. Bernal SA, Mejía De Gutierrez R, Provis JL, Rose V (2010) Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem Concr Res 40:898–907. https://doi.org/10.1016/j.cemconres.2010.02.003

    Article  Google Scholar 

  56. Zhang YJ, Zhao YL, Li HH, Xu DL (2008) Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J Mater Sci 43:7141–7147. https://doi.org/10.1007/s10853-008-3028-9

    Article  Google Scholar 

  57. Gebregziabiher BS, Thomas R, Peethamparan S (2015) Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cem Concr Compos 55:91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001

    Article  Google Scholar 

  58. Yusuf MO, Johari MAM, Ahmad ZA, Maslehuddin M (2014) Effects of addition of Al(OH)3 on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash (AAGU) based binder. Constr Build Mater 50:361–367. https://doi.org/10.1016/j.conbuildmat.2013.09.054

    Article  Google Scholar 

  59. Shi Z, Shi C, Wan S, Li N, Zhang Z (2018) Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem Concr Res 113:55–64. https://doi.org/10.1016/j.cemconres.2018.07.005

    Article  Google Scholar 

  60. Davidovits J, Davidovits M, Davidovits N (1994) Process for obtaining a geopolymeric alumino-silicate and products thus obtained, 5342595

  61. He P, Wang M, Fu S, Jia D, Yan S, Yuan J, Xu J, Wang P, Zhou Y (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int 42:14416–14422. https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  Google Scholar 

  62. Lee B, Kim G, Kim R, Cho B, Lee S, Chon CM (2017) Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr Build Mater 151:512–519. https://doi.org/10.1016/j.conbuildmat.2017.06.078

    Article  Google Scholar 

  63. Çetintaş R, Soyer-Uzun S (2018) Relations between structural characteristics and compressive strength in volcanic ash based one–part geopolymer systems. J Build Eng 20:130–136. https://doi.org/10.1016/j.jobe.2018.07.011

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted at the Construction Materials Laboratory of Istanbul Bilgi University. The authors would like to acknowledge the financial support from the Istanbul Bilgi University Research Fund (Project Code: 2019.02.004). The authors would like to acknowledge the AKCANSA Cement Company for supplying slag and cement. Moreover, we would like to thank the METU Central Laboratory and Yildiz Technical University Central Laboratory for the XRD and SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Busra Akturk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12993 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akturk, B., Ayhan, B.U. Alkali-activated basalt powder/slag systems: compressive strength and microstructural characterization. Mater Struct 56, 81 (2023). https://doi.org/10.1617/s11527-023-02165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02165-1

Keywords

Navigation