Skip to main content
Log in

Experimental investigation on tensile strength of hollow concrete blocks

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, an experimental and statistical analysis was carried out from hollow concrete blocks. Firstly, 30 blocks were tested under compression force (vertical-direction). After, 60 blocks were studied under the splitting test from ASTM–C–1006 and, later a direct tensile test was applied to other 60 blocks. The blocks, in the direct tensile test, were subjected to a tensile force in the horizontal directions (30 in each directions). For the direct tensile test, a special test procedure was developed. The results show that, independently of the test procedure applied (direct or splitting), the tensile strength has a significant statistical difference between both horizontal directions (x and y), evidencing the non–isotropy character from the hollow concrete blocks. Splitting method results was significantly smaller in the x–direction than by the direct method, contrary in the y–direction. A statistical analysis of parametric and non-parametric hypothesis tests was used to determine the significance levels between both test procedures. In addition, this article concludes with a discussion between the compressive and tensile strength relationships in the orthogonal directions of the hollow concrete blocks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(E_{{C_{g} }}\) :

HCB compressive modulus over gross area in the z direction, MPa

\(E_{{C_{n} }}\) :

HCB Compressive modulus over net area in the z direction, MPa

\(f^{\prime}_{{C_{g} }}\) :

HCB uniaxial compressive strength over gross area in the z direction, MPa

\(f^{\prime}_{{C_{n} }}\) :

HCB uniaxial compressive strength over net area in the z direction, MPa

\(Ft_{{D_{x} }}\) :

Direct Tensile force in the x direction, kN

\(Ft_{{D_{y} }}\) :

Direct Tensile force in the y direction, kN

\(ft_{{D_{gx} }}\) :

Direct Tensile Strength over gross area in the x direction, MPa

\(ft_{{D_{nx} }}\) :

Direct Tensile Strength over net area in the x direction, MPa

\(ft_{{D_{nxE} }}\) :

Estimated Tensile strength from the curve fit in the x-direction

\(ft_{{D_{gy} }}\) :

Direct Tensile Strength over gross area in the y direction, MPa

\(ft_{{D_{ny} }}\) :

Direct Tensile Strength over net area in the y direction, MPa

\(\varepsilon_{tDx}\) :

Direct Tensile Strain in the x direction

\(\varepsilon_{tDy}\) :

Direct Tensile Strain in the y direction

\(\varepsilon_{tDx,U}\) :

Direct Ultimate Tensile Strain in the x direction

\(\varepsilon_{tDy,U}\) :

Direct Ultimate Tensile Strain in the y direction

\(Et_{{D_{gx} }}\) :

Direct Tensile Modulus over gross area in the x direction, MPa

\(Et_{{D_{gy} }}\) :

Direct Tensile Modulus over gross area in the y direction, MPa

\(Et_{{D_{nx} }}\) :

Direct Tensile Modulus over net area in the x direction, MPa

\(Et_{{D_{ny} }}\) :

Direct Tensile Modulus over net area in the y direction, MPa

\(Ft_{{S_{x} }}\) :

Splitting Tensile force in the x direction, kN

\(Ft_{{S_{y} }}\) :

Splitting Tensile force in the y direction, kN

\(ft_{{S_{x} }}\) :

Splitting Tensile Strength in the x direction, MPa

\(ft_{{S_{y} }}\) :

Splitting Tensile Strength in the y direction, MPa

\(l_{x}\) :

Split length in the x direction, (mm)

\(l_{y}\) :

Split length in the y direction, (mm)

\(E_{MAE}\) :

Mean absolute error (%)

References

  1. SMIE (2019) Building with Masonry (In Spanich). (Sociedad Mexicana de Ingniería Estructural).Limusa Noriega. ISBN: 978-607-05-0861-51.1

  2. Zhou Q, Wang F, Zhu F, Yang X (2017) Stress–strain model for hollow concrete block masonry under uniaxial compression. Mater Struct. https://doi.org/10.1617/s11527-016-0975-5

    Article  Google Scholar 

  3. Fei Z, Qiang Z, Fenglai W, Xu Y (2017) Spatial variability and sensitivity analysis on the compressive strength of holow concrete block masonry wallettes. Constr Build Mater 140(129–138):129–138. https://doi.org/10.1016/j.conbuildmat.2017.02.099

    Article  Google Scholar 

  4. Drougkas A, Roca P, Molins C (2015) Numerical prediction of the behavior, strength and elasticity of masonry in compression. Eng Struct 90:15–28. https://doi.org/10.1016/j.engstruct.2015.02.011

    Article  Google Scholar 

  5. Bolhassani M, Hamid A, Lau ACW, Moon F (2015) Simplified micro modeling of partially grouted masonry assemblages. Constr Build Mater 83(159–173):159–173. https://doi.org/10.1016/j.conbuildmat.2015.03.021

    Article  Google Scholar 

  6. Abdulla KF, Cunningham LS, Gillie M (2017) Simulating masonry wall behaviour using a simplified micro-model approach. Eng Struct 151:349–365. https://doi.org/10.1016/j.engstruct.2017.08.021

    Article  Google Scholar 

  7. Sousa R, Guedes J, Sousa H (2015) Characterization of the uniaxial compression behaviour of unreinforced masonry—sensitivity analysis based on a numerical and experimental approach. Arch Civil Mech Eng 15(2):532–547. https://doi.org/10.1016/j.acme.2014.06.007

    Article  Google Scholar 

  8. Moradabadi E, Laefer DF, Clarke JA, Lourenço PB (2015) A semi-random field finite element method to predict the maximum eccentric compressive load for masonry prisms. Constr Build Mater 77:489–500. https://doi.org/10.1016/j.conbuildmat.2014.12.027

    Article  Google Scholar 

  9. Pulatsu B, Erdogmus E, Lourenço PB, Lemos JV, Hazzard J (2020) Discontinuum analysis of the fracture mechanism in masonry prisms and wallettes via discrete element method. Meccanica 55(3):505–523. https://doi.org/10.1007/s11012-020-01133-1

    Article  MathSciNet  Google Scholar 

  10. Pulatsu B, Bretas EM, Lourenco PB (2016) Discrete element modeling of masonry structures validation and application (Discrete element modeling of masonry structures: validation and application). Earthq Struct 11(4):563–582

    Article  Google Scholar 

  11. Bisoffi-Sauve M, Morel S, Dubois F (2019) Modelling mixed mode fracture of mortar joints in masonry buildings. Eng Struct 182:316–330. https://doi.org/10.1016/j.engstruct.2018.11.064

    Article  Google Scholar 

  12. Pulatsu B, Gonen S, Erdogmus E, Lourenço PB, Lemos JV, Hazzard J (2020) Tensile fracture mechanism of masonry wallettes parallel to bed joints: a stochastic discontinuum analysis. Model 1(2):78–93

    Article  Google Scholar 

  13. Roca P, Cervera M, Gariup G, Pela’ L (2010) Structural analysis of masonry historical constructions classical and advanced approaches. Arch Comput Meth Eng 17(3):299–325

    Article  Google Scholar 

  14. Roca P, González JL, Oñate E, Lourenço PB (1998) Experimental and numerical issues in the modelling of the mechanical behaviour of masonry. Struct Anal Hist Constr II I:57–91

    Google Scholar 

  15. Pandey BH, Meguro K (2004) Simulation of brick masonry wall behavior under inplane lateral loading using applied element method. In: Paper presented at the 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada. https://www.iitk.ac.in/nicee/wcee/thirteenth_conf_Canada/

  16. Mojsilović N (2011) Tensile strength of clay blocks: an experimental study. Constr Build Mater 25(11):4156–4164. https://doi.org/10.1016/j.conbuildmat.2011.04.052

    Article  Google Scholar 

  17. Zhu F, Zhou Q, Wang F, Yang X (2017) Spatial variability and sensitivity analysis on the compressive strength of hollow concrete block masonry wallettes. Constr Build Mater 140:129–138. https://doi.org/10.1016/j.conbuildmat.2017.02.099

    Article  Google Scholar 

  18. Álvarez-Pérez J, Chávez-Gómez JH, Terán-Torres BT, Mesa-Lavista M, Balandrano-Vázquez R (2020) Multifactorial behavior of the elastic modulus and compressive strength in masonry prisms of hollow concrete blocks. Constr Build Mater 241:18. https://doi.org/10.1016/j.conbuildmat.2020.118002

    Article  Google Scholar 

  19. Haach VG, Vasconcelos G, Lourenço PB (2013) Development of a new test for determination of tensile strength of concrete blocks. In: Paper presented at the 12th Canadian Masonry Symposium, Vancouver, British Columbia. https://repositorium.sdum.uminho.pt/bitstream/1822/26309/1/181-913-1-DR.pdf

  20. Hilsdorf HK (1969) An investigation into the failure mechanism of brick masonry under axial compression. Designing, engineering and constructing with masonry products. Gulf, Huston, Texas

  21. Hamid AA, Drysdale RG (1988) Flexural tensile strength of concrete block masonry. J Struct Eng 114(1):50–66

    Article  Google Scholar 

  22. Balandrano R (2019) Multifactorial analysis for the axial compression behavior of hollow concrete blocks in masonry prisms (In Spanich). Autonomous University of Nuevo León. http://eprints.uanl.mx/17930/

  23. Mojsilović N (2011) Strength of masonry subjected to in-plane loading: a contribution. Int J Solids Struct 48(6):865–873. https://doi.org/10.1016/j.ijsolstr.2010.11.019

    Article  MATH  Google Scholar 

  24. Lizárraga JF, Pérez-Gavilán JJ (2017) Parameter estimation for nonlinear analysis of multi-perforated concrete masonry walls. Constr Build Mater 141:353–365. https://doi.org/10.1016/j.conbuildmat.2017.03.008

    Article  Google Scholar 

  25. Mesbah A, Morel JC, Walker P, Ghavami K (2004) Development of a direct tensile test for compacted earth blocks reinforced with natural fibers. J Mater Civil Eng (ASCE) 16(1):95–98. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(95)

    Article  Google Scholar 

  26. ASTM-C-1006 (2013) Standard test method for splitting tensile strength of Masonry units. https://www.astm.org/Standards/C1006.htm

  27. Almeida JC, Lourenço PB, Barros JAO (2005) Experimental investigation of bricks under uniaxial tensile testing. Masonry International 18(1):11–20

    Google Scholar 

  28. Thomas K, O’Leary DO (1970) Tensile strength tests on two types of brick In: West HWH, Se B, FGS, Ceram FI, Speed KH, Amitai M (eds) Proceedings of the second internationaI brick masonry conference held in Stoke-on-Trent, England, The british ceramic research association. http://www.hms.civil.uminho.pt/ibmac/1970/69.pdf

  29. McBurney JW (1928) Strength of brick in tension. J Am Ceram Soc 11(2):114–117. https://doi.org/10.1111/j.1151-2916.1928.tb16864.x

    Article  Google Scholar 

  30. Hamid AA, Drysdale RG (1982) Effect of Strain Gradient on Tensile Strength of Concrete Blocks. In: Borchelt JG (ed) ASTM International, West Conshohocken, PA, pp 57–65. https://doi.org/10.1520/STP30114S

  31. Crisafulli J (1997) Seismic behaviour of reinforced concrete structures with masonry infills. In: Doctor of Philosophy in Civil Engineering, University of Canterbury. https://doi.org/10.26021/1979

  32. ASTM-C67–17 (2017) Standard test methods for sampling and testing brick and structural clay tile.17. https://www.astm.org/DATABASE.CART/HISTORICAL/C67-17.htm

  33. Schubert P (1994) Tensile and flexural strength of masonry - influences, test methods, test results. In: Paper presented at the Proceedings of the 10th International brick/block masonry conference, Calgary, Canada. http://www.hms.civil.uminho.pt/ibmac/1994/895.pdf

  34. Vasconcelos G (2005) Experimental investigations on the mechanics of stone masonry: Characterization of granites and behaviour of ancient masonry shear walls. University of Minho, Guimarães, Portugal

    Google Scholar 

  35. Atkinson RH, Noland JL, Abrams DP (1985) Deformation failure theory for stack-bond brick masonry in compression. https://experts.illinois.edu/en/publications/deformation-failure-theory-for-stack-bond-brick-masonry-prisms-in

  36. Rosenhaupt S, Van Riel AC, Wyler, (1957) A new indirect tensile test for concrete theoretical analysis and preliminary experiments. Bullet Res Council Israel 6C(1):13

    Google Scholar 

  37. Mohamad G, Lourenço PB, Roman HR (2007) Mechanics of hollow concrete block masonry prisms under compression: review and prospects. Cement Concr Compos 29(3):181–192. https://doi.org/10.1016/j.cemconcomp.2006.11.003

    Article  Google Scholar 

  38. Vermeltfoort AT (1997) Properties of some clay bricks under varying loading conditions. Masonry Inter 10(3):85–91

    Google Scholar 

  39. Pluijm VR (1992) Material properties of masonry and its components under tension and shear. In: Proceedings 6th canadian masonry symposium. Canadian Masonry Symposium. University of Saskatchewan. Saskatoon, Canada. https://research.tue.nl/nl/publications/a07ad701-8c85-4e32-a9f4-fba8c3d5b769

  40. Pluijm vd R (1999) Out-of-Plane Bending of Masonry: Behavior and Strength. Technische Universiteit Eindhoven, Eindhoven. https://doi.org/10.6100/IR528212

    Book  Google Scholar 

  41. Cattaneo S, Rosati G, Banthia N (2009) A simple model to explain the effect of different boundary conditions in direct tensile tests. Constr Build Mater 23(1):129–137. https://doi.org/10.1016/j.conbuildmat.2008.01.013

    Article  Google Scholar 

  42. Mayes RL, Clough RW (1975) A literature survey – compressive, tensile, bond and shear strength of masonry. University of California, Berkeley

    Google Scholar 

  43. M Alwathaf AAAH (2014) The Behavior of hollow concrete block masonry underaxial compression. J Eng Sci 3(2):32–53

    Google Scholar 

  44. Barbosa CS, Hanai JB (2009) Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results (Resistência e deformabilidade de blocos vazados de concreto: correlação entre os resultados experimentais de blocos e corpos-de-prova cilíndricos). Revista IBRACON de estructuras e materiais 2(1):85–99

    Article  Google Scholar 

  45. Bolhassani M, Hamid AA, Moon FL (2016) Enhancement of lateral in-plane capacity of partially grouted concrete masonry shear walls. Eng Struct 108:59–76. https://doi.org/10.1016/j.engstruct.2015.11.017

    Article  Google Scholar 

  46. Rizzatti E, Roman HR, Mohamad G, Nakanishi EY (2012) Mechanical behavior analysis of small-scale modeling of cermaic block masonry structures-Geometries effect. Revista IBRACON de estructuras e materiais 5(5):702–736. https://doi.org/10.1590/S1983-41952012000500007

    Article  Google Scholar 

  47. OLIVEIRA LMF (2014) Numerical and experimental study of the behavior of vertical interfaces of interconnected structural masonry walls. São Carlos School of Engineering, University of São Paulo, São Carlos. Ph.D Thesis. https://pdfs.semanticscholar.org/962e/d473f5f018d7d5424cf2b6d01c5755ee3d3c.pdf

  48. Fatemeh J, Sharif S, Mohammad S (2014) Lattice discrete particle modeling of compressive failure in hollow concrete blocks. Comput Concrete 13(4):437–456. https://doi.org/10.12989/cac.2014.13.4.437

  49. Parker C, Tanner J, Varela J (2007) Evaluation of ASTM methods to determine splitting tensile strength in concrete, masonry, and autoclaved aerated concrete. J ASTM Int 4(2):12. https://doi.org/10.1520/JAI100446

    Article  Google Scholar 

  50. Soto Izquierdo I, Soto Izquierdo O, Ramalho MA, Taliercio A (2017) Sisal fiber reinforced hollow concrete blocks for structural applications: testing and modeling. Constr Build Mater 151:98–112. https://doi.org/10.1016/j.conbuildmat.2017.06.072

    Article  Google Scholar 

  51. OliveiraCorrêa lMFMRS (2017) Numerical and experimental analysis of the shear capacity of interconnected concrete block walls. Ambient Constr 17(3):25–37. https://doi.org/10.1590/s1678-86212017000300160

    Article  Google Scholar 

  52. NMX-ONNCCE-C-036 (2013) Resistencia a la Compresión de Bloques, Tabiques o Ladrillos y Tabicones y Adoquines– Método de Ensayo. https://onncce.org.mx/es/

  53. ASTM-C-140–17A (2017) Standard test methods for sampling and testing concrete masonry units and related units. https://www.astm.org/DATABASE.CART/HISTORICAL/C140C140M-17.htm

  54. NMX-ONNCCE-C-404 (2012) Bloques, Tabiques o Ladrillos y Tabicones Para Uso Estructural – Especificaciones y Métodos de Ensayo. https://onncce.org.mx/es/

  55. SPSS I (2017) IBM SPSS statistics for windows, Version 25.0. https://www.ibm.com/mx-es/products/spss-statistics

  56. Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Third Edition. Printed in the United States of America, Wiley. ISBN 0-471-20454-4 

  57. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402. https://doi.org/10.2307/2283970

    Article  Google Scholar 

  58. Davies JD, Bose DK (1968) Stress Distribution in splitting test. ACI Struct J 65(8):662–669

    Google Scholar 

  59. Erdfelder E, Faul F, Buchner A (1996) GPOWER: a general power analysis program. Behav Res Methods Instrum Comput 28(1):1–11. https://doi.org/10.3758/BF03203630

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the School of Civil Engineering (FIC) and the Structural Engineering Department of the Universidad Autónoma de Nuevo León (UANL), as well as the PRODEP: 511-6/2019.-10151 (Program for Teacher Professional Development), and the PAICYT: IT1350-20 (Support Program For Scientific And Technological Investigation).

Funding

PRODEP: 511–6/2019–10151 (Program for Teacher Professional Development), PAICYT: IT1350–20 (Support Program for Scientific and Technological Investigation).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis, Investigation, Writing—Original Draft, Project administration, funding acquisition: J. Álvarez-Pérez. Validation, Data Curation Methodology, Writing—Original Draft, Visualization: M. Mesa-Lavista. Methodology, Resources, Project administration, funding acquisition: J. Chávez-Gómez. Formal analysis, Writing—Review & Editing: G. Fajardo-San Miguel.

Corresponding author

Correspondence to Milena Mesa-Lavista.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Pérez, J., Mesa-Lavista, M., Chávez-Gómez, J.H. et al. Experimental investigation on tensile strength of hollow concrete blocks. Mater Struct 54, 164 (2021). https://doi.org/10.1617/s11527-021-01761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01761-3

Keywords

Navigation