Skip to main content
Log in

Activation energy of calcium sulfoaluminate cement-based materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this study, calcium sulfoaluminate (CSA) cement pastes were tested for heat of hydration and chemical shrinkage at temperatures of 20 °C, 30 °C and 40 °C. Apparent activation energy (\(E_{a}\)) values were then calculated using both exponential and hyperbolic methods. The average \(E_{a}\) of the CSA cements ranged from 42.24 to 80.22 kJ/mol, much higher than that of Type I Portland cement (38–45 kJ/mol). \({E}_{a}\) increased slightly with the replacement of silica fume for cement. However, average \({E}_{a}\) decreased by 18.4% when 20% Class C fly ash was used, but increased by 21.3% when 40% Class C fly ash was used. \(E_{a}\) calculated from heat of hydration using the exponential method is 17% lower than that obtained using the hyperbolic method. When the exponential method was used, \({E}_{a}\) values determined using heat of hydration were 30% higher than those obtained using chemical shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas RJ, Maguire M, Sorensen AD, Quezada I (2018) Calcium sulfoaluminate cement: benefits and applications. Concr Int 40:65–69

    Google Scholar 

  2. Niu M, Li G, Wang Y et al (2019) Immobilization of Pb2+ and Cr3+ using bentonite-sulfoaluminate cement composites. Constr Build Mater 225:868–878. https://doi.org/10.1016/j.conbuildmat.2019.06.184

    Article  Google Scholar 

  3. Tang S, Zhu H, Li Z et al (2015) Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age. Constr Build Mater 75:11–18. https://doi.org/10.1016/j.conbuildmat.2014.11.006

    Article  Google Scholar 

  4. Yang X, Sun Z, Yang H et al (2017) Identification of hydration stage of calcium sulfoaluminate cement at an early age with helium pycnometry. Mater Struct 50:1–13. https://doi.org/10.1617/s11527-017-1050-6

    Article  Google Scholar 

  5. Liao Y, Wei X, Li G (2011) Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations. Constr Build Mater 25:1572–1579. https://doi.org/10.1016/j.conbuildmat.2010.09.042

    Article  Google Scholar 

  6. Saadoon T, Gómez-Meijide B, Garcia A (2019) New predictive methodology for the apparent activation energy and strength of conventional and rapid hardening concretes. Cem Concr Res 115:264–273. https://doi.org/10.1016/j.cemconres.2018.10.020

    Article  Google Scholar 

  7. Atkins P, de Paula J (2009) Elements of Physical Chemistry, 5th edn. Oxford University Press, NewYork

    Google Scholar 

  8. Kada-Benameur H, Wirquin E, Duthoit B (2000) Determination of apparent activation energy of concrete by isothermal calorimetry. Cem Concr Res 30:301–305. https://doi.org/10.1016/S0008-8846(99)00250-1

    Article  Google Scholar 

  9. Pang X, Bentz DP, Meyer C et al (2013) A comparison study of Portland cement hydration kinetics as measured by chemical shrinkage and isothermal calorimetry. Cem Concr Compos 39:23–32. https://doi.org/10.1016/j.cemconcomp.2013.03.007

    Article  Google Scholar 

  10. Xu Q, Hu J, Ruiz JM et al (2010) Isothermal calorimetry tests and modeling of cement hydration parameters. Thermochim Acta 499:91–99. https://doi.org/10.1016/j.tca.2009.11.007

    Article  Google Scholar 

  11. Bentz DP (2014) Activation energies of high-volume fly ash ternary blends: hydration and setting. Cem Concr Compos 53:214–223. https://doi.org/10.1016/j.cemconcomp.2014.06.018

    Article  Google Scholar 

  12. ASTM C1608 (2017) Standard test method for chemical shrinkage of hydraulic cement paste, ASTM International, West Conshohocken, PA. http://www.astm.org

  13. Scrivener K, Ruben S, Lothenbach B (2016) A Practical guide to microstructural analysis of cementitious materials Boca Raton

  14. Siddiqui S, Riding KA (2012) Effect of calculation methods on cement paste and mortar apparent activation energy. Adv Civ Eng Mater 1:1–19. https://doi.org/10.1520/acem20120011

    Article  Google Scholar 

  15. Lura P, Winnefeld F, Klemm S (2010) Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J Therm Anal Calorim 101:925–932. https://doi.org/10.1007/s10973-009-0586-2

    Article  Google Scholar 

  16. Carino N (1984) The maturity method: Theory and application. Cem Concr Aggregates 6:61–73. https://doi.org/10.1520/cca10358j

    Article  Google Scholar 

  17. Barnett SJ, Soutsos MN, Millard SG, Bungey JH (2006) Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies. Cem Concr Res 36:434–440. https://doi.org/10.1016/j.cemconres.2005.11.002

    Article  Google Scholar 

  18. ASTM C1074 (2019) Standard practice for estimating concrete strength by the maturity method, ASTM International, West Conshohocken, PA. http://www.astm.org

  19. Julio-Betancourt GA, Hooton RD (2004) Study of the joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes. Cem Concr Res 34:1007–1015. https://doi.org/10.1016/j.cemconres.2003.11.012

    Article  Google Scholar 

  20. Wei X, Xiao L (2010) Determination of activation energy of cement hydration by electrical resistivity measurement. In: K. van Breugel; Guang Ye; Yong Yuan (ed) 2nd International Symposium on Service Life Design for Infrastructure. RILEM Publications SARL, pp 883–890

  21. Nokken MR (2016) Electrical conductivity to determine maturity and activation energy in concretes. Mater Struct 49:2209–2221. https://doi.org/10.1617/s11527-015-0644-0

    Article  Google Scholar 

  22. Dovál M, Palou M, Kovár V (2005) Heat evolution and mechanism of hydration in CaO-Al2O3-SO3 system. Ceram - Silikaty 49:104–108

    Google Scholar 

  23. Tao J, Wei X (2019) Effect of ground granulated blast-furnace slag on the hydration and properties of cement paste. Adv in Cem Res 31(6): 251–260. https://doi.org/10.1680/jadcr.17.00166

  24. He Z, Yang H, Liu M (2014) Hydration mechanism of sulphoaluminate cement. J Wuhan Univ Technol - Mater Sci Ed 29:70–74. https://doi.org/10.1007/s11595-014-0869-8

    Article  Google Scholar 

  25. Bullerjahn F, Boehm-Courjault E, Zajac M et al (2019) Hydration reactions and stages of clinker composed mainly of stoichiometric ye’elimite. Cem Concr Res 116:120–133. https://doi.org/10.1016/j.cemconres.2018.10.023

    Article  Google Scholar 

  26. He Z, Yang H, Hu S, Liu M (2013) Hydration mechanism of silica fume-sulphoaluminate cement. J Wuhan Univ Technol - Mater Sci Ed 28:1128–1133. https://doi.org/10.1007/s11595-013-0832-0

    Article  Google Scholar 

  27. Thomas JJ, Jennings HM, Chen JJ (2009) Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J Phys Chem C 113:4327–4334. https://doi.org/10.1021/jp809811w

    Article  Google Scholar 

  28. Geiker M, Knudsen T (1982) Chemical shrinkage of Portland cement pastes. Cem Concr Res 12:603–610. https://doi.org/10.1016/0008-8846(82)90021-7

    Article  Google Scholar 

  29. Zhang J, Weissinger EA, Peethamparan S, Scherer GW (2010) Early hydration and setting of oil well cement. Cem Concr Res 40:1023–1033. https://doi.org/10.1016/j.cemconres.2010.03.014

    Article  Google Scholar 

  30. Brooks A, Schindler A, Barnes RW (2007) Maturity method evaluated for various cementitious materials. J Mater Civ Eng 19:1017–1025. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1017)

  31. Kjellsen KO, Detwiler RJ, Gjorv OE (1990) Backscattered electron imaging of cement pastes hydrated at different temperatures. Cem Concr Res 20(2): 308–311. https://doi.org/10.1016/0008-8846(90)90085-C

  32. Kjellsen KO, Detwiler RJ, Gjorv OE (1991) Development of microstructures in plain cement pastes hydrated at different temperatures. Cem Concr Res 21(1):179–189. https://doi.org/10.1016/0008-8846(91)90044-I

    Article  Google Scholar 

  33. Lin F, Meyer C (2009) Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem Concr Res 39(4):255–265. https://doi.org/10.1016/j.cemconres.2009.01.014

    Article  Google Scholar 

  34. Jayapalan AR, Jue ML, Kurtis KE (2014) Nanoparticles and apparent activation energy of Portland cement. J Am Ceram Soc 97:1534–1542. https://doi.org/10.1111/jace.12878

    Article  Google Scholar 

  35. Chaunsali P, Ardeshirilajimi A, Mondal P (2018) On the interaction of Class C fly ash with Portland cement–calcium sulfoaluminate cement binder. Mater Struct 51:1–9. https://doi.org/10.1617/s11527-018-1245-5

    Article  Google Scholar 

  36. Chaunsali P, Mondal P (2016) Physico-chemical interaction between mineral admixtures and OPC-calcium sulfoaluminate (CSA) cements and its influence on early-age expansion. Cem Concr Res 80:10–20. https://doi.org/10.1016/j.cemconres.2015.11.003

    Article  Google Scholar 

  37. Gutteridge WA, Dalziel JA (1990) Filler cement: The effect of the secondary component on the hydration of Portland cement: Part 1. A fine non-hydraulic filler. Cem Concr Res 20(5): 778–782

  38. Gutteridge WA, Dalziel JA (1990) Filler cement: The effect of the secondary component on the hydration of portland cement: part 2: Fine hydraulic binders. Cem Concr Res 20(6):853–861. https://doi.org/10.1016/0008-8846(90)90011-L

    Article  Google Scholar 

  39. Ioannou S, Reig L, Paine K, Quillin K (2014) Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cem Concr Res 56: 75–83. https://doi.org/10.1016/j.cemconres.2013.09.015

  40. Martin LHJ, Winnefeld F, Tschopp E, Müller CJ, Lothenbach B (2017) Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cem Concr Res 95:152–163. https://doi.org/10.1016/j.cemconres.2017.02.030

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology) [grant number ZR201901]; the CRSRI Open Research Program [grant number CKWV2019756/KY]; the National Natural Science Foundation of China (NSFC) [grant number 51608402]; and the China Scholarship Council (CSC) [grant number 201808420105]. The first two authors would like to thank Sichun Wang for helping to revise the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishun Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Gui, Y., Wang, K. et al. Activation energy of calcium sulfoaluminate cement-based materials. Mater Struct 54, 162 (2021). https://doi.org/10.1617/s11527-021-01753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01753-3

Keywords

Navigation