Skip to main content
Log in

Biaxial tension–compression strength behaviour of UHPFRC in-plane elements

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Ultra-high-performance fibre-reinforced concrete (UHPFRC) panel-shaped elements subjected to compression–tension loading are tested to investigate their in-plane structural behaviour under biaxial stress. Tension-stiffening and compression-softening ultra-high-performance concrete (UHPC) behaviours are analysed with and without fibre, based on the test results from 30 specimens subjected to various transverse tensile strains. The tension-stiffening bond factor of UHPC with fibre is found to be about twice that of UHPC without fibre. The compressive strength of a UHPC panel subjected to transverse tensile loading is decreased by 50 % without fibre and 30 % when the fibre is in the elastic range of the reinforcing bars. Sequential loading of biaxial stress onto UHPC is appropriate for determining the limited lower boundary for the reduction of compressive strength that characterises the transverse tensile effects of fibre reinforcement. In addition to the biaxial behaviour of the UHPC panel, the failure envelope of UHPC with and without fibre is suggested schematically by considering the existing references, and a failure envelope is proposed. The entire analytical investigation and proposed failure criteria will allow for the efficient optimisation of the geometries of UHPFRC structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Charron JP, Denarié E, Brühwiler E (2007) Permeability of ultra high performance fiber reinforced concretes (UHPFRC) under high stresses. Mater Struct 40(3):269–277

    Article  Google Scholar 

  2. Graybeal B (2006) Material property characterization of ultra-high performance concrete. FHWA-HRT-06-103

  3. Graybeal B (2010) Simultaneous structural and environmental loading of an ultra-high performance concrete components. FHWA-HRT-10-054

  4. Baby F, Graybeal B, Marchand P, Toutlemonde F (2013) UHPFRC tensile behavior characterization: inverse analysis of four-point bending test results. Mater Struct 46(8):1337–1354

    Article  Google Scholar 

  5. Wille K, Kim DJ, Naaman AE (2011) Strain-hardening UHP-FRC with low fiber contents. Mater Struct 44(3):583–598

    Article  Google Scholar 

  6. Toutlemonde F, Resplendino J (2011) Designing and building with UHPFRC: state of the art and development. ISTE Ltd., London. ISBN 978-1-84821-271-8

    Book  Google Scholar 

  7. Belarbi A, Hsu TTC (1995) Constitutive laws of softened concrete in biaxial tension–compression. ACI Struct J 92(5):562–573

    Google Scholar 

  8. Fehling E, Leutbecher T, Roder F (2008) Biaxial compression–tension-strength of reinforced concrete and reinforced steel fiber concrete in structural panels. Kassel University Press, Kassel. ISBN 978-3-89958-440-0

    Google Scholar 

  9. Fehling E, Leutbecher T, Roder F, Sturwald S (2008b) Structural behavior of UHPC under biaxial loading. Structural materials and engineering series no. 10. Kassel University Press, Kassel, pp 569–576

  10. Kollegger J, Mehlhorn G (1987) Material model for cracked reinforced concrete. IABSE reports, pp 63–74. doi:10.5169/seals-41917

  11. Vecchio FJ, Collins MP (1986) The modified compression field theory for reinforced concrete elements subjected to shear. ACI J 83(2):219–231

    Google Scholar 

  12. Graybeal B, Baby F (2013) Development of direct tension test method for ultra-high-performance fiber-reinforced concrete. ACI Mater J 110(2):177–186

    Google Scholar 

  13. Park SH, Kim DJ, Ryu GS, Koh KT (2012) Effect of adding micro fibers on the pullout behavior of high strength steel fibers in UHPC matrix. In: Proceedings of Hipermat 2012, p 541–548. ISBN 978-3-86219-264-9

  14. Wille K, El-Tawil S, Naaman AE (2014) Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem Concr Compos 48:53–66

    Article  Google Scholar 

  15. Zhang JP (1997) Strength of cracked concrete, Part 3—load carrying capacity of disks subjected to in-plane stresses. Department of Structural Engineering and Materials, Technical University of Denmark, Series R(18). ISBN 87-7740-200-6

  16. Hoang LC, Jacobsen HJ, Larsen B (2012) Compressive strength of reinforced concrete disks with transverse tension. Dan Soc Struct Sci Eng 83(2–3):23–61

    Google Scholar 

  17. Jungwirth J, Muttoni A (2004) Structural behavior of tension members in UHPC. In: Proceedings of the international symposium on ultra high performance concrete, Kassel, p 533–546. ISBN 978-3-89958-086-0

  18. Jungwirth J (2006) Zum Tragverhalten von Zugbeanspruchten Bauteilen aus Ultra-Hochleistungs-Faserbeton. PhD Dissertation, EPFL

  19. KCI (2012) Design guidelines for ultra high performance concrete K-UHPC structure. Korea Concrete Institute. ISBN 978-89-89499-06-0 93540

  20. Fischer G, Li VC (2002) Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC). ACI Struct J 99(1):104–111

    Google Scholar 

  21. Leutbecher T, Fehling E (2004) Structural behavior of UHPC under tensile stress and biaxial loading. Structural materials and engineering series no. 3. Kassel University Press, Kassel, p 435–446

  22. Leutbecher T (2007) Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem Ultrahochfesten Beton (UHPC). PhD Dissertation, Kassel University

  23. Leutbecher T, Fehling E (2012) Tensile behavior of ultra-high-performance concrete reinforced with reinforcing bars and fibers: minimizing fiber content. ACI Struct J 109(2):253–264

    Google Scholar 

  24. Walraven JC (2009) High performance fiber reinforced concrete: progress in knowledge and design codes. Mater Struct 42:1247–1260

    Article  Google Scholar 

  25. Redaelli D (2006) Testing of reinforced high performance fiber concrete members in tension. In: Proceedings of 6th international PhD symposium in civil engineering, Zurich, pp 1–8

  26. Fischer G, Li VC (2007) Effect of fiber reinforcement on the response of structural members. Eng Fract Mech 74(1–2):258–272

    Article  Google Scholar 

  27. Fib Bulletin No. 65 (2012) Model code 2010—final, vol 1. Fib. ISBN 978-2-88394-105-2

  28. Bischoff PH (2003) Tension stiffening and cracking of steel fiber-reinforced concrete. J Mater Civ Eng ASCE 15(2):174–182

    Article  Google Scholar 

  29. Branson DE (1997) Deformation of concrete structures. McGraw-Hill, New York. ISBN 978-0-07007-240-4

    Google Scholar 

  30. Fields K, Bischoff PH (2004) Tension stiffening and cracking of high-strength reinforced concrete tension members. ACI Struct J 101(4):447–456

    Google Scholar 

  31. Fehling E, Schmidt M, Walraven J, Leutbecher T, Frohlich S (2014) Ultra-high performance concrete UHPC: fundamental-design-examples. Ernst and Sohn, Berlin. ISBN 978-3-433-03087-5

    Book  Google Scholar 

  32. ACI 318M-11 (2011) Building code and commentary. ACI. ISBN 978-0-87031-745-3

  33. Roos W (1994) Zur Druckfestigkeit des gerissenen Stahlbetons in scheibenförmigen Bauteilen beigleichzeitig wirkender Querzugbeanspruchung. Dissertation, Technical University of Munchen

  34. CEN (2004) EN 1992-1-1 Eurocode 2: design of concrete structures—Part 1-1: general rules and rules for buildings. European Committee for Standardization, Brussels. ISBN 0 580 45191 7

  35. Speck K (2007) Concrete under multiaxial loading conditions—a constitutive model for short-time loading of high performance concretes. Dissertation, Technical University of Dresden

  36. Grunberg J, Ertel C, Lohaus L et al (2010) Failure models for ultra high performance concrete (UHPC). In: 2010 Fib congress and PCI Convention bridge conference proceedings, Washington, DC

  37. Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses. ACI J 66(8):656–666

    Google Scholar 

  38. Hussein A, Marzouk H (2000) Behavior of high-strength concrete under biaxial stresses. ACI Mater J 97(1):27–36

    Google Scholar 

  39. Fib Bulletin No. 42 (2008) Constitutive modelling of high strength/high performance concrete. Fib. ISBN 978-2-88394-082-6

  40. Demeke A, Tegos IA (1994) Steel fiber reinforced concrete in biaxial stress tension–compression conditions. ACI Struct J 91(5):579–584

    Google Scholar 

  41. Traina LA, Mansour SA (1991) Biaxial strength and deformation behavior of plain and steel fiber concrete. ACI Mater J 88(4):354–362

    Google Scholar 

  42. van Mier JGM (1984) Strain-softening of concrete under multiaxial loading conditions. Dissertation, Eindhoven University of Technology

  43. Ottosen NS (1977) A failure criterion for concrete. ASCE J 103(EM4):527–534

    Google Scholar 

  44. Lee J, Hong S (2015) Shear friction strength based on limit analysis for ultra-high performance fiber reinforced concrete. KCI J 27(3):296–306

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (13SCIPA02) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean Government and Korea Agency for Infrastructure Technology Advancement (KAIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Gul Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Hong, SG., Joh, C. et al. Biaxial tension–compression strength behaviour of UHPFRC in-plane elements. Mater Struct 50, 20 (2017). https://doi.org/10.1617/s11527-016-0918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0918-1

Keywords

Navigation