Skip to main content
Log in

Cement-based piezoelectret

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A cement-based piezoelectret is reported for the first time. Both poling during setting and sodium silicate liquid admixture strengthened the piezoelectret effect. The electret voltage increased upon compressive strain, with partial reversibility; the voltage change was up to 450 V per unit strain (i.e., piezoelectret coupling coefficient up to 4.2 × 10−15 m/V). The effect was relatively strong for a Na+ concentration of 0.5 M in the water, in combination with a poling electric field of 225 V/m. The effect increased with increasing magnitude of the constant compressive stress. The direct piezoelectric effect was observed as a minor effect, with the voltage decreasing upon compressive strain; the voltage change was up to 6.7 V per unit strain (i.e., piezoelectric coupling coefficient down to −2.3 × 10−16 m/V). An Na+ concentration of 0.5 M gave superior performance than 1.0 M. For 0.5 M, the compressive modulus and piezoelectret coupling coefficient were higher. The poling reduced the compressive modulus and caused pore formation in the vicinity of the electrodes, but it enhanced the piezoelectret effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wenger MP, Blanas P, Shuford RJ, Das-Gupta DK (1996) Acoustic emission signal detection by ceramic/polymer composite piezoelecrets embedded in glass-epoxy laminates. Polym Eng Sci 36(24):2945–2954. doi:10.1002/pen.10696

    Article  Google Scholar 

  2. Schwödiauer R, Neugschwandtner GS, Schrattbauer K, Lindner M, Vieytes M, Bauer-Gogonea S et al (2000) Preparation and characterization of novel piezoelectric and pyroelectric polymer electrets. IEEE Trans Dielectr Electr Insul 7(4):578–586. doi:10.1109/94.868080

    Article  Google Scholar 

  3. Meschia SC, Schmidt VH, Taubner S (1996) An electret accelerometer for use in active vibration control systems. In: ISAF’96 proceedings of the IEEE international symposium on applications of ferroelectrics, 10th, East Brunswick, NJ, August 18–21, 1996, vol 1, pp 117–119

  4. Gaynor PT, Hughes JF (1998) Dust anchoring characteristics of electret fibers with respect to Der p 1 allergen carrying particles. Med Biol Eng Comput 36(5):615–620. doi:10.1007/BF02524433

    Article  Google Scholar 

  5. Shumakov VI, Chepurov AK, Kazlove VK, Kazakova TI (1975) Adhesion of blood platelets to electret polymers. Polim Med 5(3):247–252

    Google Scholar 

  6. Scott JF, Zubko P (2005) Electret effects in ferroeletric thin films. In: Proceedings—international symposium on electrets (ISE 12), 12th, Salvador, Brazil, September 11–14, 2005, pp 113–115

  7. Magerramov AM, Kerimov MK, Hamidov EM (2004) Electret polymer materials for dosimetry of γ-irradiation. In: NATO Science Series, IV: earth and environmental sciences, p 41. Radiation Safety Problems in the Caspian Region, pp 205–209

  8. Bauer S, Bauer-Gogonea S, Dansachumller M, Graz I, Leonhartsberger H, Salhofer H et al (2003) Modern electrets. In: Proceedings—IEEE ultrasonics symposium, vol 1, pp 370–376

  9. Sahu DK, Khare PK, Shrivastava RK (2004) Dielectric loss factor in electrically polarized polyvinylidene fluoride film electrets by TSDC. Indian J Phys 78(11):1205–1209

    Google Scholar 

  10. Khare PK, Sahu DK, Verma A, Srivatava RK (2004) Depolarization studies of polyvinylidene fluoride foil electrets using thermally stimulated discharge. Indian J Pure Appl Phys 42(9):693–696

    Google Scholar 

  11. Fedosov SN, Sergeeva AV, Giacometti JA, Ribeiro PA (1999) Corona poling of a ferroelectric polymer (PVDF). In: Proceedings of SPIE—the international society for optical engineering, p 4017. Polym Liq Crystals 53–58

  12. Holstein P, Leister N, Weber U, Geschke D, Binder H, Monti GA et al (1999) A combined study of polarization in PVDF. In: Proceedings—international symposium on electrets, 10th, Delphi, Greece, September 22–24, 1999, pp 509–512

  13. Eisenmenger W, Schmidt H, Dehlen B (1999) Space charge and dipoles in polyvinylidene fluoride. Braz J Phys 29(2):295–305. doi:10.1590/S0103-97331999000200011

    Article  Google Scholar 

  14. Frensch H, Wendorff JH (1985) Correlations between the structure and the electret behavior of PVDF/PMMA alloys. In: Proceedings—international symposium on electrets, 5th, pp 132–137

  15. Sessler GM, Gerhard-Multhaupt R, Von Seggern H (1985) Charge and polarization profiles in polymer electrets. In: Proceedings—international symposium on electrets, 5th, pp 565–570

  16. Mellinger A, Singh R, Wegener M, Wirges W, Suarez RF, Lang SB et al (2005) High-resolution three-dimensional space-charge and polarization mapping with thermal pulses. In: Proceeding—international symposium on electrets (ISE 12), 12th, Salvador, Brazil, September 11–14, 2005, pp 212–215

  17. Gol’tsov YI, Kramarenko IS, Panchenko EM, Zagoruiko VA, Mal’tsev VT, Sokolova TV (1983) Electret effect in heterogeneous ceramic dielectrics and glasses. USSR Avail VINITI Deposited Doc (VINITI 2386-83), 19 pp

  18. Gubkin AN, Popova OS, Ogloblin VA, Kuskova AM (1974) Study of electrect from ceramic dielectrics, glasses and glass-ceramics. Sb Ref—Vses Konf Fiz Dielektr Perspekt Ee Razvit, Meeting Date 1973, vol 2, pp 126–127

  19. Gubkin AN, Kashtanova AM, Ogloblin VA, Rastorgueva AV (1972) Time dependences of charges and slowly established polarization of electrets made of glasses and glass-ceramics. USSR Tr Mosk Inst Elektron Mashinostr 21:38–47

    Google Scholar 

  20. Nakamura S, Ueshima M, Kobayashi T, Yamashita K (2003) Crystal growth modification by surface charge on ceramic electret in simulated body fluid. In: Key engineering materials, pp 240–242. Bioceramics 445–448

  21. Panchapakesan R (2007) Electret effect in cement. Thesis, University at Buffalo, State University of New York

  22. Huang C-Y, Chung DDL (in press) Controlling and increasing the inherent voltage in cement paste. Adv Cement Res

  23. Wen S, Chung DDL (2007) Piezoresistivity-based strain sensing in carbon fiber reinforced cement. ACI Mater J 104(2):171–179

    Google Scholar 

  24. Wen S, Chung DDL (2006) Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon 44(8):1496–1502. doi:10.1016/j.carbon.2005.12.009

    Article  Google Scholar 

  25. Wen S, Chung DDL (2006) Model of piezoresistivity in carbon fiber cement. Cement Concr Res 36(10):1879–1885. doi:10.1016/j.cemconres.2006.03.029

    Article  Google Scholar 

  26. Zhu S, Chung DDL (2007) Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. J Mater Sci 42(15):6222–6233. doi:10.1007/s10853-006-1131-3

    Article  Google Scholar 

  27. Wen S, Chung DDL (2006) Effects of strain and damage on the strain sensing ability of carbon fiber cement. J Mater Civ Eng 18(3):355–360. doi:10.1061/(ASCE)0899-1561(2006)18:3(355)

    Article  Google Scholar 

  28. Wen S, Chung DDL (2005) Strain sensing characteristics of carbon fiber reinforced cement. ACI Mater J 102(4):244–248

    Google Scholar 

  29. Chung DDL (2002) Piezoresistive cement-based materials for strain sensing. J Intell Mater Syst Struct 13(9):599–609

    Article  Google Scholar 

  30. Wen S, Chung DDL (2003) A comparative study of steel- and carbon-fibre cement as piezoresistive strain sensors. Adv Cement Res 15(3):119–128. doi:10.1680/adcr.15.3.119.36621

    Article  Google Scholar 

  31. Wen S, Chung DDL (2002) Piezoelectric cement-based materials with large coupling and voltage coefficients. Cement Concr Res 32(3):335–339. doi:10.1016/S0008-8846(01)00682-2

    Article  Google Scholar 

  32. Sun M, Li Z, Song X (2004) Piezoelectric effect of hardened cement paste. Cement Concr Compos 26:717–720. doi:10.1016/S0958-9465(03)00104-5

    Article  Google Scholar 

  33. Sun M, Liu Q, Li Z, Wang E (2002) Electrical emission in mortar under low compressive loading. Cement Concr Res 32:47–50. doi:10.1016/S0008-8846(01)00627-5

    Article  Google Scholar 

  34. Lam KH, Chan HLW (2005) Piezoelectric cement-base 1-3 composites. Appl Phys A 81:1451–1454. doi:10.1007/s00339-005-3226-0

    Article  Google Scholar 

  35. Zhang D, Li Z, Wu K-R (2002) 2-2 piezoelectric cement matrix composite: part II actuator effect. Cement Concr Res 32:825–830

    Google Scholar 

  36. Cheng X, Huang S, Chang J (2007) Piezoelectric, dielectric and ferroelectric properties of 0-3 ceramic/cement composites. J Appl Phys 101:094110. doi:10.1063/1.2730559

    Article  Google Scholar 

  37. Cheng X, Huang S, Chang J, Lu L, Liu F (2005) Dielectric and piezoelectric properties of piezoelectric ceramic-sulphoaluminate cement composites. Smart Mater Struct 14(59-N):63

    Google Scholar 

  38. Dong B, Li Z (2005) Cement-based piezoelectric cement smart composites. Compos Sci Technol 65:1363–1371. doi:10.1016/j.compscitech.2004.12.006

    Article  Google Scholar 

  39. Gerhard-Multhaupt R, Künstler W, Görne T, Pucher A, Weinhold T, Seiß M (2000) Porous PTFE space-charge electrets for piezoelectric applications. IEEE Trans Dielectr Electr Insul 7(4):480–488. doi:10.1109/94.868065

    Article  Google Scholar 

  40. Mellinger A, Gonzalez FC, Gerhard-Multhaupt R, Santos LF, Faria RM (2002) Photostimulated discharge of corona and electron-beam charged electret polymers. In: Proceedings—international symposium on electrets, 11th, Melbourne, Australia, October 1–3, 2002, pp 7–10

  41. Krashennikov AI, Lipaev SM, Rybnikov YS, Sbrodova LI (1986) Triboelectret effect during triboelectrification of power coatings. USSR, Lakokrasochnye Materialy i Ikh Primenenie 3:38–40

  42. Bally RJ (1987) Cement–sodium silicate suspensions for underground construction. Hidrotehnica 32(7):260–265

    MathSciNet  Google Scholar 

  43. Winter E, Clarke WJ, Guthrie JW (1986) Microfine cement grout strengthens foundations. Concr Int Des Constr 8(10):59–61

    Google Scholar 

  44. Domone PL (1990) The properties of low-strength silicate/Portland cement grouts. Cement Concr Res 20(1):25–35. doi:10.1016/0008-8846(90)90113-C

    Article  Google Scholar 

  45. Lim HM, Yang HC, Chun BS, Lee SH (2005) The effect of sodium tripolyphosphate on sodium silicate-cement grout. In: Materials science forum, pp 486–487. Eco-Mater Process Des VI, 391–394

  46. Scheetz BE, Hoffer JP (1995) Characterization of sodium silicate-activated Portland cement: 1. Matrixes for low-level radioactive waste forms. American Concrete Institute, SP-158 (Concrete and Grout in Nuclear and Hazardous Waste Disposal), pp 91–110

  47. Okamoto T (1981) Acid-resistant cement prepared from sodium silicate binder. Semento Gijutsu Nenpo 35:90–93

    Google Scholar 

  48. Morioka M (2006) Cement admixtures for decreasing crack formation and cement composition. Jpn Kokai Tokkyo Koho, 9 pp

  49. Larosa-Thompson J, Gill P, Scheetz BE, Silsbee MR (1997) Sodium silicate application for cement and concrete. In: Proceeding of the international congress on the chemistry of cement, 10th, Gothenburg, June 2–6, 1997, 3 3iii024, 8 pp

  50. Askeland DR, Phule PP (2003) The science and engineering of materials, 4th edn. Thomson, CA

Download references

Acknowledgment

Partial support by the Mark Diamond Research Fund, University at Buffalo, State University of New York, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Wang, S. & Chung, D.D.L. Cement-based piezoelectret. Mater Struct 42, 541–557 (2009). https://doi.org/10.1617/s11527-008-9401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9401-y

Keywords

Navigation