Skip to main content
Log in

About the statistical interpretation of air permeability assessment results

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The reinforcement protection provided by a concrete cover of proper thickness and resistant to the penetration of aggressive agents is a key factor for the durability of reinforced concrete structures. The most efficient way to achieve adequate resistance to the penetration of aggressive agents is a performance-based specification of concrete, complemented with a suitable site control of the specified performance. The results from near-surface air permeability tests are presented in this paper, and their correlations with compressive strength, water–cement ratio and carbonation resistance are analyzed using different statistical parameters as representative values of each set of air permeability measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of the test chamber (m2)

a i :

Individual observation

f c,28 :

Compressive strength at 28 days (MPa)

k carb :

Carbonation coefficient (mm/day1/2)

kT :

Air permeability coefficient (m2)

kT gm :

Geometric mean of air permeability coefficient (m2)

kT lab :

Air permeability coefficient from laboratory test (m2)

kT lim :

Limit of the error bars for the air permeability coefficient (m2)

kT site :

Air permeability coefficient from site test (m2)

L :

Maximum penetration of air permeability test (m)

n :

Number of observations in a sample

p a :

Atmospheric pressure (N m−2)

R 2 :

Determination coefficient

RH:

Relative humidity (%)

t :

Time (day)

t i :

Time at the beginning of air permeability test (s)

t f :

Time at the end of air permeability test (s)

x c :

Carbonation depth (mm)

V c :

Volume of Torrent’s test chamber (m3)

W/C :

Water–cement ratio

Δp :

Pressure raise Torrent’s test chamber (N m−2)

ε:

Concrete porosity

η:

Viscosity of air (N s m−2)

σg :

Standard deviation of air permeability coefficient logarithms (m2)

References

  1. Torrent R, Alexander M, Kropp J (2007) Introduction and problem statement. In: State-of-the-art report of RILEM technical committee TC189-NEC non-destructive evaluation of the penetrability and thickness of the concrete cover. RILEM, pp 1–11

  2. Baroghel-Bouny V (2006) Durability indicators: relevant tools for performance-based evaluation and multi-level prediction of RC durability. In: International RILEM workshop on performance-based evaluation and indicators for concrete durability. Madrid, Spain, pp 3–30

  3. Dinku A, Reinhardt HW (1997) Gas permeability coefficient of cover concrete as a performance control. Mater Struct 30(7):387–393

    Article  Google Scholar 

  4. RILEM TC 116-PCD (1999) Concrete durability—an approach towards performance testing. Mater Struct 32(3):163–173

    Article  Google Scholar 

  5. Alexander M (2004) Durability indexes and their use in concrete engineering. In: International RILEM symposium on advances in concrete through science and engineering. Evanston, USA

  6. Basheer P, Montgomery FR, Long AE (1994) Factorial experimental design for concrete durability research. Build Struct 104(4):449–462

    Article  Google Scholar 

  7. Dhir R, Hewlett PC, Chan YN (1989) Near-surface characteristics of concrete: prediction of carbonation resistance. Mag Concr Res 41(148):122–128

    Google Scholar 

  8. Kubens S, Wassermann R, Bentur A (2003) Non destructive air permeability tests to assess the performance of the concrete cover. In: 15th ibausil international baustofftagung. Bauhaus, Germany

  9. Torrent R (2000) On the tracks of the durability-meter/Sulle traccie del durabilimetro. L’Industria Italiana del Cemento 752, AITEC, Italy, pp 262–269

  10. Romer M, Leeman A (2005) Sensitivity of a non-destructive vacuum test method to characterize concrete permeability. In: International conference on concrete repair, rehabilitation and retrofitting. Cape Town, South Africa, pp 467–473

  11. Andrade C, Alexander M, Basheer M, Beushausen H, Fernández Luco L, Gonçalves AF, Jacobs F, Neves R, Podvoiskis J, Polder R, Romer M (2007) Comparative test—part I: ‘penetrability’ methods. In: Non-destructive evaluation of the penetrability and thickness of the concrete cover. RILEM, pp 157–185

  12. Coutinho A, Gonçalves A (1993) Production and properties of concrete (in Portuguese), vol III. LNEC, Lisbon, Portugal

  13. Andrade C, González Gasca C, Torrent R (2000) The suitability of the ‘TPT’ to measure the air-permeability of the covercrete. In: 5th CANMET/ACI international conference on durability of concrete. Barcelona, Spain

  14. Jacobs F (2006) Luftpermeabilität als Kenngrösse für die Qualität des Überdeckungsbetons von Betonbauwerken’ (in German). In: Forschungsauftrag AGB 2002/003 auf Antrag der Arbeitsgruppe Brückenforschung (AGB), TFB, Switzerland

  15. Denarié E, Conciatori D, Maître M, Brühwiler E (2005) Air permeability measurements for the assessment of the in situ permeability of cover concrete. In: International conference on concrete repair, rehabilitation and retrofitting. Cape Town, South Africa, pp 475–481

  16. Torrent R (2001) Diseño por durabilidad—Técnicas de ensayo y su aplicación (in Spanish). Seminar held within the frame of XV CEMCO curso de estudios mayores de la construcción. Instituto Eduardo Torroja, Madrid, Spain

    Google Scholar 

  17. Jacobs F, Hunkeler F (2007) Air permeability as a characteristic parameter for the quality of cover concrete. In: Concrete platform 2007. Belfast, UK, pp 173–182

  18. Jacobs F, Hunkeler F (2006) Non destructive testing of the concrete cover. Evaluation of permeability test data. In: International RILEM workshop on performance based evaluation and indicators for concrete durability. Madrid, Spain, pp 207–214

  19. Torrent R (1992) A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct 25(6):358–365

    Article  Google Scholar 

  20. SN 505 262/1 (2003) Norme Suisse: Construction en béton—Spécifications complémentaires, Annexe E: perméabilité à l’air dans les structures, SAI, Switzerland, pp 30–31

  21. Torrent R, Frenzer G (1995) Methoden zur messung und beurteilung der kennwerte des uberdeckungsbetons auf der baustelle—Teil 2 (in German). Office Federal des Routes, Switzerland

    Google Scholar 

  22. Torrent R, Basheer M, Gonçalves AF (2007) Non-destructive methods to measure gas-permeability. In: Non-destructive evaluation of the penetrability and thickness of the concrete cover. RILEM, pp 35–70

  23. Ribeiro A, Gonçalves A, Salta M, Machado A (2003) Performance of concrete with an intended life of 50 years. ACI Special Publication 212, ACI, pp 871–890

  24. Torrent R (2005) Towards a performance-based specification and conformity control of durability. In: Fib symposium structural concrete and time. Buenos Aires, Argentina, pp 267–274

    Google Scholar 

  25. Basheer M, Montgomery F, Long A (1993) The Autoclam permeability system for measuring the in situ permeation properties of concrete. In: International conference on non destructive testing in civil engineering. Liverpool, England, pp 235–260

  26. Dhir R, Hewlett PC, Chan YN (1987) Near-surface characteristics of concrete: assessment and development of in situ test methods. Mag Conc Res 39(141):183–195

    Google Scholar 

  27. Schönlin K, Hilsdorf H (1988) Permeability as a measure of potential durability of concrete—Development of a suitable test apparatus. ACI Special Publication. ACI 108:99–115

    Google Scholar 

  28. Quoc P, Kishi T (2008) Effect of curing condition on air permeability of cover concrete. In: Third ACF international conference on sustainable concrete technology and structures on local climate and environment conditions. Ho Chi Minh, Vietnam, pp 334–341

  29. Ollivier J, Massat M, Parrott L (1995) Parameters influencing transport characteristics. In: Performance criteria for concrete durability. RILEM, pp 33–96

  30. Torrent R, Ebensperger L (1993) Methoden zur messung und beurteilung der kennwerte des uberdeckungsbetons auf der baustelle—Teil 1 (in German). Office Federal des Routes, Switzerland

  31. Permeability Tester TORRENT (2005) Operating instructions. In: PROCEQ, Schwerzenbach, Switzerland

  32. Hollander M, Wolfe D (1999) Nonparametric statistical methods, 2nd edn. John Wiley & Sons, New York

  33. Torrent R (2009) Permea-TORR user manual v1.2. Materials Advanced Services Ltd., Buenos Aires, Argentina

  34. Benjamini Y (1988) Opening the box of a Boxplot. In: The American statistician 42. ASA, pp 257–262

  35. Tukey J (1977) Exploratory data analysis. Addison-Wesley, United States of America

    MATH  Google Scholar 

  36. Pollard J (1979) A handbook of numerical and statistical techniques. Cambridge University Press, United Kingdom

    MATH  Google Scholar 

  37. Hilsdorf H (1995) Concrete compressive strength, transport characteristics and durability. In: Performance criteria for concrete durability. E&FN Spon, pp 165–197

  38. Nilsson L, Luping T (1995) Relations between different transport parameters. In: Performance criteria for concrete durability. E&FN Spon, pp 15–32

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge de Brito.

Appendix: Individual test results

Appendix: Individual test results

See Tables 8, 9, and 10.

Table 8 Individual kT results in laboratory using cement CEM II/A–L
Table 9 Individual kT results in laboratory using cement CEM IV/A
Table 10 Individual kT results on site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, R., Branco, F. & de Brito, J. About the statistical interpretation of air permeability assessment results. Mater Struct 45, 529–539 (2012). https://doi.org/10.1617/s11527-011-9780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9780-3

Keywords

Navigation