Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T20:09:50.401Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) and Waterhemp (Amaranthus rudis) Management in Dicamba-Resistant Soybean (Glycine max)

Published online by Cambridge University Press:  20 January 2017

Douglas J. Spaunhorst
Affiliation:
Division of Plant Sciences, 5 Waters Hall, University of Missouri, Columbia, MO 65211
Simone Siefert-Higgins
Affiliation:
Monsanto Corporation, 800 N. Lindbergh, Creve Coeur, MO 63141
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, 201 Waters Hall, Columbia, MO 76211
*
Corresponding author's E-mail: BradkeyKe@missouri.edu.

Abstract

Field experiments were conducted across two locations during 2011 and 2012 to evaluate herbicide options for the control of glyphosate-resistant (GR) giant ragweed and GR waterhemp in dicamba-resistant (DR) soybean. All herbicide treatments provided 91 to 100% control of GR giant ragweed 3 wk after treatment (WAT). Flumioxazin plus dicamba plus glyphosate applied preplant provided greater control and density reduction of GR giant ragweed than flumioxazin plus 2,4-D plus glyphosate. When flumioxazin plus dicamba plus glyphosate were applied preplant, the addition of dicamba to glyphosate at either the early-postemergence (EPOST) or mid-postemergence (MPOST) timing provided greater control and density reduction of GR giant ragweed than glyphosate alone. Regardless of the preplant treatment, delay of EPOST dicamba to the MPOST timing did not influence GR giant ragweed control or density reduction. In the GR waterhemp experiment, dicamba plus glyphosate applied sequentially provided 88 to 89% control and 90% density reduction at the EPOST and MPOST timings compared to only 24% control and 42% density reduction in response to glyphosate applied sequentially. Control and GR waterhemp density reduction did not improve with the addition of acetochlor to either the EPOST or late-postemergence (LPOST) timings. Flumioxazin plus chlorimuron applied PRE followed by dicamba plus glyphosate or dicamba plus glyphosate plus acetochlor provided greater control of GR waterhemp than glyphosate plus fomesafen or glyphosate alone applied EPOST. Results from this research indicate that dicamba applied once or sequentially and when timed appropriately to match the biology of the weed species can be utilized as a component of an integrated program for the management of GR weeds like giant ragweed and waterhemp in DR soybean.

Se realizaron experimentos de campo en dos localidades durante 2011 y 2012 para evaluar las opciones de herbicidas para el control de Ambrosia trifida resistente a glyphosate (GR) y Amaranthus rudis GR, en soya resistente a dicamba (DR). Todos los tratamientos de herbicidas brindaron 91 a 100% de control de A. trifida GR, 3 semanas después del tratamiento (WAT). Flumioxazin más dicamba más glyphosate aplicados pre-siembra brindaron mayor control y una mayor reducción en la densidad de A. trifida GR que flumioxazin más 2,4-D más glyphosate. Cuando se aplicó flumioxazin más dicamba más glyphosate en pre-siembra, la adición de dicamba a glyphosate, ya sea en post-emergencia temprana (EPOST) o post-emergencia media (MPOST), brindó mayor control y mayor reducción de la densidad de A. trifida GR que glyphosate solo. Sin importar el tratamiento pre-siembra, el retrasar la aplicación de dicamba de EPOST a MPOST no influenció el control o la reducción en la densidad de A. trifida GR. En el experimento de A. rudis GR, las aplicaciones secuenciales de dicamba más glyphosate brindaron 88 a 89% de control y 90% de reducción en la densidad en EPOST y MPOST al compararse con solamente 24% de control y 42% en la reducción de la densidad en respuesta a glyphosate aplicado secuencialmente. El control y la reducción en la densidad de A. rudis GR no mejoró con la adición de acetochlor a las aplicaciones EPOST o post-emergencia tardía (LPOST). Flumioxazin más chlorimuron aplicados PRE seguidos de dicamba más glyphosate o dicamba más glyphosate más acetochlor brindaron mayor control de A. rudis GR que glyphosate más fomesafen o glyphosate solo aplicado EPOST. Los resultados de esta investigación indican que la aplicación sola o secuencial de dicamba en el momento apropiado según la biología de la especie de maleza puede ser utilizada como un componente del programa integrado para el manejo de malezas GR tales como A. trifida y A. rudis en soya DR.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2013) Clarity® herbicide product label. EPA Reg. No. 7969-137. Research Triangle Park, NC: BASF Corporation. Pp. 1021 Google Scholar
Baysinger, JA, Sims, BD (1991) Giant ragweed (Ambrosia trifida L.) interference in soybeans (Glycine max). Weed Sci 39:358362 Google Scholar
Baysinger, JA, Sims, BD (1992) Giant ragweed (Ambrosia trifida L.) control in soybean (Glycine max). Weed Technol 6:1318 Google Scholar
Blouin, DC, Webster, EP, Bond, JA (2011) On the analysis of combined experiments. Weed Technol 25:165169 Google Scholar
Bradley, KW (2013) Herbicide-resistance in the Midwest: current status and impacts. Weed Sci Soc Am Abstr 271. http://www.wssaabstracts.com/publis/17/proceedings.html. Accessed April, 24 2013Google Scholar
Bradley, KW, Legleiter, T, Hunter, L, Nichols, C, Foresman, C (2007) The status of glyphosate-resistant waterhemp in Missouri. North Central Weed Sci Soc Abstr 192. http://www.ncwss.org/pubs.php. Accessed December, 12 2012Google Scholar
Bryson, CT, DeFelice, MS (2009) Weeds of the South. Athens: University of Georgia. Pp 3753.Google Scholar
Cao, M, Sato, SJ, Behrens, M, Jiang, WZ, Clemente, TE, Weeks, DP (2011) Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba. J Agric Food Chem 59:58305834 Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two or three-factor treatments designs. Agron J 81:665672 Google Scholar
Clewis, SB, Wilcut, JW, Porterfield, D (2006) Weed management with S-metolachlor and glyphosate mixtures in glyphosate-resistant strip- and conventional-tillage cotton (Gossypium hirsutum L.) Weed Technol 20:232241 Google Scholar
Green, JM, Castle, LA (2010) Transitioning from single to multiple herbicide-resistant crops. Pages 6791 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, JN: J Wiley Google Scholar
Hager, A (2011) Herbicide-Resistant Weeds in Illinois: A cause for concern. University of Illinois Extension Bulletin No 3 Article Apr. 6, 2011 http://bulletin.ipm.illinois.edu/print.php?id=1466 Accessed: Mar. 21, 2012Google Scholar
Hager, AG, Wax, LM, Stoller, EW, Bollero, GA (2002) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610 Google Scholar
Harrison, SK, Regnier, EE, Schmoll, JT, Webb, JE (2001) Competition and fecundity of giant ragweed in corn. Weed Sci 49:224229 Google Scholar
Hartzler, RG, Battles, BA, Nordby, D (2004) Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci 52:242245 Google Scholar
Heap, IM (2013) The international survey of herbicide resistant weeds. http://www.weedscience.org. Accessed: April 17, 2013Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Johnson, B, Loux, M, Nordby, D, Sprague, C, Nice, G, Westhoven, A, Stachler, J (2007) The Glyphosate, Weeds, and Crops Series: Biology and Management of Giant Ragweed (GWC-12). West Lafayette, IN: University of Purdue Extension. 14 pGoogle Scholar
Johnson, B, Young, B, Matthews, J, Marquardt, P, Slack, C, Bradley, K, York, A, Culpepper, S, Hager, A, Al-Khatib, K, Steckel, L, Moechnig, M, Loux, M, Bernards, M, Smeda, R (2010) Weed control in dicamba-resistant soybeans. Online. Crop Manag DOI: Google Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
Patzoldt, WL, Tranel, PJ (2002) Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci 50:299305 Google Scholar
Stoller, EW, Wax, LM (1973) Periodicity of germination and emergence of some annual weeds. Weed Sci 21:574580 Google Scholar
Vink, JP, Soltani, N, Robinson, DE, Tardif, FJ, Lawton, MB, Sikkema, PH (2012) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol 26:422428 Google Scholar
Waggoner, BS, Bradley, KW (2011) A survey of weed incidence and severity in response to management practices in Missouri soybean production fields. North Central Weed Sci Soc Abstr 80. http://www.ncwss.org/pubs.pht. Accessed January 25, 2013Google Scholar
Webster, TM, Loux, MM, Regnier, EE, Harrison, SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559564 Google Scholar