Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T10:28:58.325Z Has data issue: false hasContentIssue false

Evaluation of Tillage and Herbicide Interaction for Amaranthus Control in Cotton

Published online by Cambridge University Press:  20 January 2017

Jessica A. Kelton
Affiliation:
Auburn University, Auburn, AL 36849
Andrew J. Price*
Affiliation:
USDA-ARS, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
Michael G. Patterson
Affiliation:
Auburn University, Auburn, AL 36849
C. Dale Monks
Affiliation:
Auburn University, Auburn, AL 36849
Edzard van Santen
Affiliation:
Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: Andrew.price@ars.usda.gov

Abstract

Amaranthus control in cotton can be difficult with the loss of glyphosate efficacy, especially in conservation-tillage cropping systems. Research was conduction from 2006 to 2008 at EV Smith Research Center, Shorter, AL, to determine the level of glyphosate-susceptible Amaranthus control provided by four initial tillage and herbicide treatments, including 1) moldboard plowing followed by a single-pass disking and field cultivation plus pendimethalin at 1.2 kg ai ha−1 preplant incorporation (PPI), 2) two-pass disking followed by field cultivation plus pendimethalin at 1.2 kg ha−1 PPI, 3) no tillage including an application of pendimethalin at 1.2 kg ha−1 PRE, or 4) no tillage without pendimethalin in 2006. No further tillage practices or pendimethalin applications were utilized after study initiation. Initial tillage operations, including inversion with disking or disking twice, resulted in Amaranthus density of ≤ 4 plants m−2 and 47 to 82% control, whereas no-tillage treatments had ≥ 4 plants m−2 and 14 to 62% control. Subsequent applications of PRE herbicides included fluometuron at 1.68 kg ai ha−1 or prometryn at 1.12 kg ai ha−1 and provided 53 to 98% and 55 to 93% control, respectively, and reduced Amaranthus density compared to no PRE herbicide to < 2 plants m−2, regardless of tillage treatment. A POST application of glyphosate at 1.0 kg ae ha−1 improved control in conjunction with almost all treatments in each year. Results indicate that a one-time tillage operation followed by a return to reduced tillage may aid in the reduction of Amaranthus density when used with PRE-applied herbicides; however, this system will likely not provide adequate control when high population densities of glyphosate-resistant Amaranthus are present, thus highlighting the need for a highly efficacious POST herbicide system.

El control de Amaranthus en algodón puede ser difícil con la pérdida de eficacia de glyphosate, especialmente en sistemas de cultivos con labranza de conservación. Se realizaron investigaciones desde 2006 a 2008 en el Centro de Investigación EV Smith, en Shorter, Alabama, para determinar el nivel de control de Amaranthus susceptible a glyphosate provisto por cuatro tratamientos con labranza inicial y herbicidas, los cuales incluyeron 1) labranza con arado de vertedera seguida por un único pase de rastra de discos y un cultivador más pendimethalin a 1.2 kg ai ha−2 en pre-siembra incorporado (PPI), 2) dos pases de rastra de discos seguidos por un pase con cultivador más pendimethalin a 1.2 kg ha−1 PPI, 3) sin labranza incluyendo una aplicación de pendimethalin a 1.2 kg ha−1 PRE, o 4) sin labranza y sin pendimethalin en 2006. No se realizaron prácticas adicionales de labranza o aplicaciones de herbicidas después del inicio del estudio. Las operaciones de labranza iniciales que incluyeron inversión del suelo con el pase de discos una o dos veces resultaron en densidades de Amaranthus ≤4 plantas m−2 y 47 a 82% de control, mientras que los tratamientos sin labranza tuvieron ≥4 plantas m−2 y 14 a 62% de control. Las aplicaciones posteriores de herbicidas PRE incluyeron fluometuron a 1.68 kg ai ha−1 o prometryn a 1.12 kg ai ha−1 y brindaron 53 a 98% de control, respectivamente, y redujeron la densidad de Amaranthus en comparación con los tratamientos sin herbicidas PRE a <2 plantas m−2 sin importar el tratamiento de labranza. Una aplicación de glyphosate a 1.0 kg ae ha−1 mejoraron el control en combinación con casi todos los tratamientos en cada año. Los resultados indican que una operación de labranza seguida por labranza reducida podría ayudar en la reducción de la densidad de Amaranthus cuando se usó herbicidas aplicados PRE. Sin embargo, este sistema probablemente no brindará control adecuado cuando altas poblaciones de Amaranthus resistente a glyphosate están presentes, resaltando la necesidad de tener un sistema de herbicidas POST eficaz.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Appleby, A. P. 2005. A history of weed control in the United States and Canada-a sequel. Weed Sci. 53:762768.CrossRefGoogle Scholar
Aulakh, J. S., Price, A. J., Enloe, S. F., van Santen, E., Wehtje, G., and Patterson, M. G. 2012a. Integrated Palmer amaranth management in glufosinate-resistant cotton: I. Soil-inversion, high-residue cover crops and herbicide regimes. Agronomy. 2:295311.CrossRefGoogle Scholar
Aulakh, J. S., Price, A. J., Enloe, S. F., van Santen, E., Wehtje, G., and Patterson, M. G. 2012b. Palmer amaranth management in glufosinate-resistant cotton: I. Tillage system, cover crops and herbicide management. Weed Management and Herbicide Resistance Special Issue. Agronomy. 2:295311.CrossRefGoogle Scholar
Baumhardt, R. L. and Lascano, R. J. 1996. Rain infiltration as affected by wheat residue amount and distribution in ridged tillage. Soil Sci. Soc. Am. J. 60:19081913.CrossRefGoogle Scholar
Bruce, R. R., Langdale, G. W., West, L. T., and Miller, W. P. 1992. Soil surface modification by biomass inputs affecting rainfall infiltration. Soil Sci. Soc. Am. J. 56:16141620.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2004. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Culpepper, A. S., Kichler, J., Sosnoskie, L., and York, A. C. 2012. University of Georgia programs for controlling Palmer amaranth in 2012 cotton. University of Georgia Extension Bulletin. http://gaweed.com/HomepageFiles/2012Palmerhandout-finalJan8.pdf. Accessed January 30, 2013.Google Scholar
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12:306310.Google Scholar
Culpepper, A. S., York, A. C., and Kichler, J. 2009. Impact of tillage on managing glyphosate-resistant Palmer amaranth in cotton. Proceedings of Beltwide Cotton Conference p. 1343, January 5 to 8, San Antonio, TX.Google Scholar
Frisvold, G. B., Boor, A., and Reeves, J. M. 2010. Simultaneous diffusion of herbicide resistant cotton and conservation tillage. AgBioForum. 12:249257. http://www.agbioforum.org/v12n34/v12n34a01-frisvold.htm. Accessed January 30, 2013.Google Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. 2009. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155.CrossRefGoogle Scholar
Grichar, W. J., Besler, B. A., Brewer, K. D., and Minton, B. W. 2004. Using soil-applied herbicides in combination with glyphosate in a glyphosate-resistant cotton herbicide program. Crop Prot. 23:10071010.CrossRefGoogle Scholar
Heap, I. The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed December 10, 2012.Google Scholar
Heisler, C. 1998. Influence of tillage and crop rotation on biological activity. Agribiol. Res. 51:289297.Google Scholar
Kemper, B. and Derpsch, R. 1981. Results of studies made in 1978 to control erosion by cover crops and no-tillage techniques in Paraná, Brazil. Soil Till. Res. 1:253267.Google Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol. 18:820825.CrossRefGoogle Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Norsworthy, J. K., Jha, P., Steckel, L. E., and Scott, R. C. 2010. Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol. 24:6470.CrossRefGoogle Scholar
Owen, M.D.K. 2010. Herbicide-resistant weeds in genetically engineered crops. Statement to the 111th Congress (2nd Session). July 28, 2010. http://www7.nationalacademies.org/ocga/testimony/t_Herbicide_Resistant_Weeds_in_GE_Crops.asp, Accessed January 30, 2013.Google Scholar
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil Water Conserv. 66:265275.CrossRefGoogle Scholar
Reeves, D. W. 1994. Cover crops and rotations. Pages 125172 in Crop Residue Management, Advances in Soil Science, Hatfield, J. L. and Stewart, B. A., eds. Boca Raton, FL Lewis.Google Scholar
Reeves, D. W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 43:131167.Google Scholar
Riar, D. S., Norsworthy, J. K., and Griffith, G. M. 2011. Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol. 25:526534.CrossRefGoogle Scholar
Roberts, R. K., English, B. C., Gao, Q., and Larson, J. A. 2006. Simultaneous adoption of herbicide-resistant and conservation-tillage cotton technologies. J. Agric. Appl. Econ. 38:629–43.CrossRefGoogle Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.CrossRefGoogle Scholar
Shaw, D., Culpepper, S. A., Owen, M., Price, A. J., and Wilson, R. 2012. Herbicide-resistant weeds threaten soil conservation gains: finding a balance for soil and farm sustainability. Issue Paper 49. Ames, IA CAST.Google Scholar
Steckel, L. E. and Culpepper, S. 2006. Impact and management of glyphosate-resistant weeds in the southern region. Abstr. Nat. IPM Conf. 46:4.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level of glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
Steckel, L. E., Main, C. L., and Mueller, T. C. 2011. Glyphosate-resistant horseweed in the United States. Pp. 185193 in Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds. Hoboken, NJ John Wiley & Sons.Google Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52:217221.CrossRefGoogle Scholar
Truman, C. C., Reeves, D. W., Shaw, J. N., Motta, A. C., Burmester, C. H., Raper, R. L., and Schwab, E. B. 2003. Tillage impacts on soil property, runoff, and soil loss variations of a Rhodic Paleudult under simulated rainfall. J. Soil Water Conserv. 58:258267.Google Scholar
Whitaker, J. R., York, A. C., Jordan, D. L., and Culpepper, A. S. 2011. Weed management with glyphosate- and glufosinate-based systems in PHY-485 WRF cotton. Weed Technol. 25:183191.CrossRefGoogle Scholar