Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T06:44:02.784Z Has data issue: false hasContentIssue false

Response of Rice (Oryza sativa) to Low Rates of Glyphosate and Glufosinate

Published online by Cambridge University Press:  20 January 2017

Brad Davis*
Affiliation:
Department of Crop, Soil and Environmental Sciences, University of Arkansas, 2001 Highway 70 East, Lonoke, AR 72086
Robert C. Scott
Affiliation:
Department of Crop, Soil and Environmental Sciences, University of Arkansas, 2001 Highway 70 East, Lonoke, AR 72086
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: bmdavis@uaex.edu.

Abstract

Field studies were conducted in 2007 and 2008 at the University of Arkansas at Pine Bluff farm near Lonoke to evaluate and compare the effects of low rates of glufosinate and glyphosate on rice. Two rice cultivars were seeded, and glyphosate and glufosinate were applied at 1/2, 1/4, and 1/8 of the labeled use rate of 870 g ae ha−1 and 616 g ai ha−1, respectively, at the three- to four-leaf, panicle initiation (PI), and boot stages. Rice canopy height reductions, reduction in flag leaf length, prolonged maturity, and yield losses were caused by both herbicides at all evaluated application timings. Although both herbicides caused significant injury, symptoms varied greatly between the two herbicides. Glufosinate injury to rice was more rapid and visually intense than with glyphosate. Glufosinate symptoms, which consisted of rapid necrosis, were visible in 1 to 2 d, whereas glyphosate symptoms, stunting and chlorosis, became visible after 7 to 10 d or not at all depending on time of application. Glyphosate applied at the 1/2× rate to rice in the boot growth stage caused less than 10% injury at 3 wk after treatment but resulted in 80% yield loss. Glufosinate at boot caused 80% injury and 80% yield loss. Glyphosate symptoms from PI and boot timings were typically only visible at heading and included malformed panicles and shortened flag leaves. Harvested grain seed weights were reduced as much as 14% by either herbicide applied at PI and boot. Germination of harvested grain was not affected by any treatment. At the rates evaluated in this research, glufosinate-induced injury to rice can be just as detrimental as glyphosate in reducing yield.

Para evaluar y comparar los efectos de dosis bajas de glufosinato y glifosato en arroz, se hicieron estudios de campo en 2007 y 2008 en la granja Pine Bluff de la Universidad de Arkansas, cerca de Lonoke. Dos cultivares de arroz se sembraron y se les aplicó glifosato o glufosinato a 1/2, 1/4 y 1/8 de la dosis recomendada de 870 g ea ha−1 y 616 g ia ha−1, respectivamente, en la etapa de 3 a 4 hojas, la de inicio de la panícula y en la fase de embuchamiento. Las reducciones en la altura del dosel del arroz, la longitud de la hoja bandera, la madurez prolongada y la reducción en el rendimiento fueron causadas por ambos herbicidas en todos las etapa de aplicación evaluadas. Aunque estos herbicidas causaron una respuesta significativa en los parámetros medidos, los síntomas variaron mucho entre los dos. El daño al arroz causado por el glufosinato fue más rápido y visualmente más intenso que con el glifosato. Los síntomas del glufosinato, que consistieron en una necrosis rápida, fueron visibles en uno a dos días, mientras que los síntomas de glifosato, que fueron el retraso en el crecimiento y la clorosis, aparecieron después de 7 a 10 días, o no aparecieron, dependiendo de la etapa de la aplicación. El glifosato aplicado a 1/2 dosis al arroz en la fase de embuchamiento, causó menos del 10% de daño a las tres semanas después de la aplicación, pero resultó en 80% de pérdida en el rendimiento. El glufosinato en la etapa de embuchamiento causó 80% de daño y 80% de pérdida en el rendimiento. Los síntomas causados por la aplicación de glifosato en la fase de inicio de la panícula y de embuchamiento, típicamente sólo se hicieron visibles al formarse las panojas e incluyeron panículas deformadas y hojas bandera más cortas. El peso del grano cosechado se redujo hasta 14% por el efecto de cualquiera de los dos herbicidas aplicados al inicio de la panícula y en la fase de embuchamiento. La germinación del grano cosechado no se vio afectada por ninguno de los tratamientos. Considerando las dosis evaluadas en esta investigación, se concluye que el daño al arroz inducido por el glufosinato puede ser tan perjudicial como el causado por el glifosato en la reducción del rendimiento.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, P. A. and Schroeder, J. 2002. Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837.Google Scholar
Carpenter, J. and Gianessi, L. 1999. Herbicide-tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioForum 2:6572.Google Scholar
Counce, P. A., Wells, B. R., Norman, R. J., and Leong, J. 1994. Simulated hail damage to rice: II. Effects during four reproductive growth stages. Agron. J. 86:11131118.Google Scholar
Culpepper, S. A., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybeans (Glycine max). Weed Technol 14:7788.Google Scholar
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol 20:2331.Google Scholar
Duke, S. O. and Cerdeira, A. L. 2005. Potential environmental impacts of herbicide-resistant crops. Coll. Biosafe. Rev 2:66143.Google Scholar
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol 17:452460.Google Scholar
Heap, I. C. 2010. International survey of herbicide-resistant weeds. http://www.weedscience.org/. Accessed: September 10, 2010.Google Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol 18:820825.Google Scholar
Koger, C. H., Shaner, D. L., Kurtz, L. J., Walker, T. W., Buehring, N., Henery, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manage. Sci 61:11611167.Google Scholar
Kurtz, M. E. and Street, J. E. 2003. Response of rice (Oryza sativa) to glyphosate applied to simulate drift. Weed Technol 17:234238.Google Scholar
Lovelace, M. L. 2000. Effects of Interference, Tillage, and Environment on Hemp Sesbania (Sesbania exaltata) and Pitted Morningglory (Ipomoea lacunosa) Ecology. . Fayetteville, AR: University of Arkansas. Pp. 6667.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed [Conyza canadensis (L.) Cronq.] populations to glyphosate. Agric. Food Chem 52:879883.Google Scholar
Matthews, S., Talbert, R., Smith, K., Barrentine, J., and McClelland, M. 2004. Glyphosate resistance in horseweed populations in Arkansas. Proc. South. Weed Sci. Soc 57:4.Google Scholar
Meier, J. R., Smith, K. L., and Doherty, R. C. 2006. Rice cultivar response to low glyphosate rates at ¼ -inch internode elongation. Pages. 10. in. Proceedings of the Arkansas Crop Protection Association. Fayetteville, AR: University of Arkansas. Volume 10.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive vs. reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol 19:924933.Google Scholar
[NASS] National Agricultural Statistics Service 2008a. USDA Crop Values 2008 Summary. http://usda.mannlib.cornell.edu/usda/nass/CropValuSu//2000s/2008/CropValuSu-02-15-2006.pdf. Accessed: Feburary 27, 2010.Google Scholar
[NASS] National Agricultural Statistics Service 2008b. USDA Acreage 2008–2009. http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-09-12-2006.pdf. Accessed: Feburary 27, 2010.Google Scholar
Senseman, S. A. ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS: Weed Science Society of America. Pp. 243248.Google Scholar
Smith, D. B., Bode, L. E., and Gerard, P. D. 2000. Predicting ground boom spray drift. Am. Soc. Agric. Eng 43:547553.Google Scholar
Stoller, E. W. and Wax, L. M. 1974. Dormancy changes and fate of some annual weed seeds in the soil. Weed Sci 22:151155.Google Scholar
Taylorson, R. B. 1970. Changes in dormancy and viability of weed seeds in soils. Weed Sci 18:265269.Google Scholar
Thomas, W. E., Burke, I. C., Robinson, B. L., Pline-Srnic, W. A., Edmisten, K. L., Wells, R., and Wilcut, J. W. 2005. Yield and physiological response of nontransgenic cotton to simulated glyphosate drift. Weed Technol 19:3542.Google Scholar