Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:10:09.721Z Has data issue: false hasContentIssue false

Targeting Weed Seeds In-Crop: A New Weed Control Paradigm for Global Agriculture

Published online by Cambridge University Press:  20 January 2017

Michael Walsh*
Affiliation:
Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Perth WA 6009, Australia
Peter Newman
Affiliation:
Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Perth WA 6009, Australia
Stephen Powles
Affiliation:
Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Perth WA 6009, Australia
*
Corresponding author's Email: michael.walsh@uwa.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The widespread evolution of multiple herbicide resistance in the most serious annual weeds infesting Australian cropping fields has forced the development of alternative, non-chemical weed control strategies, especially new techniques at grain harvest. Harvest weed seed control (HWSC) systems target weed seed during commercial grain harvest operations and act to minimize fresh seed inputs to the seedbank. These systems exploit two key biological weaknesses of targeted annual weed species: seed retention at maturity and a short-lived seedbank. HWSC systems, including chaff carts, narrow windrow burning, bale direct, and the Harrington Seed Destructor, target the weed seed bearing chaff material during commercial grain harvest. The destruction of these weed seeds at or after grain harvest facilitates weed seedbank decline, and when combined with conventional herbicide use, can drive weed populations to very low levels. Very low weed populations are key to sustainability of weed control practices. Here we introduce HWSC as a new paradigm for global agriculture and discuss how these techniques have aided Australian grain cropping and their potential utility in global agriculture.

La ampliamente diseminada evolución de resistencia a múltiples herbicidas en las malezas anuales más serias infestando los sistemas de cultivos australianos ha forzado el desarrollo de estrategias de control de malezas alternativas, especialmente nuevas técnicas al momento de la cosecha de granos. Los sistemas de control de semillas de malezas en cosecha (HWSC) se enfocan en las semillas de malezas durante las operaciones de cosecha comercial de granos y actúan para minimizar el suministro de semillas frescas al banco de semillas. Estos sistemas explotan dos debilidades biológicas clave de las especies de malezas anuales de interés: retención de semilla al momento de la madurez y un banco de semillas de corta vida. Los sistemas HWSC, incluyendo las carretas de descarga de grano, la quema de líneas angostas de residuos después de la cosecha, el embalado directo, y el Destructor de Semilla Harrington, se enfocan en los residuos de cosecha que contienen semillas de maleza durante la cosecha comercial de grano. La destrucción de estas semillas de malezas durante o después de la cosecha del grano facilitan la reducción del banco de semillas de malezas, y cuando se combinan con el uso convencional de herbicidas, pueden llevar las poblaciones de malezas a niveles muy bajos. Tener poblaciones muy bajas de malezas es clave para la sostenibilidad de las prácticas de control de malezas. Aquí, nosotros introducimos HWSC como un nuevo paradigma para la agricultura global y discutimos como estas técnicas han ayudado a la producción australiana de granos y su utilidad potencial en la agricultura global.

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Ballaré, C. L., Scopel, A. L., Ghersa, C. M., and Sánchez, R. A. 1987. The demography of Datura ferox (L.) in soybean crops. Weed Res. 27: 91102.Google Scholar
Balsari, P., Finassi, A., and Airoldi, G. 1994. Development of a device to separate weed seeds harvested by a combine and reduce their degree of germination. 12th World Congress of the International Commission of Agricultural Engineers Report No. 94-D-062. Pages 942 p.Google Scholar
Barroso, J., Navarrete, L., Sánchez Del Arco, M. J., Fernandez-Quintanilla, C., Lutman, P.J.W., Perry, N. H., and Hull, R.I. 2006. Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res. 46:118128.Google Scholar
Blanco-Moreno, J. M., Chamorro, L., Masalles, R. M., Recasens, J., and Sans, F. X. 2004. Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res. 44:375387.Google Scholar
Boutsalis, P., Gill, G. S., and Preston, C. 2012. Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across Southeastern Australia. Weed Technol. 26:391398.Google Scholar
Broster, J. C. and Pratley, J. 2006. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust. J. Exp. Agric. 46:11511160.Google Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997. Implications of weed seedbank dynamics to weed management. Weed Sci. 45:329336.Google Scholar
Chauvel, B., Guillemin, J.-P., Gasquez, J., and Gauvrit, C. 2012. History of chemical weeding from 1944 to 2011 in France: Changes and evolution of herbicide molecules. Crop Prot. 42:320326.Google Scholar
Davis, A. S. 2008. Weed seed pools concurrent with corn and soybean harvest in Illinois. Weed Sci. 56:503508.Google Scholar
de-bruin. 2013. De bruin engineering. http://www.debruinengineering.com.au/. Accessed January 2013.Google Scholar
Diggle, A. J. and Neve, P. 2001. The population dynamics and genetics of herbicide resistance - a modeling approach. Pages 6199 in Powles, S.B., Shaner, D.L., eds. Herbicide resistance and world grains. Boca Raton CRC Press Inc.Google Scholar
Duke, S. O. 2012. Why have no new herbicide modes of action appeared in recent years? Pest Manage. Sci. 68:505512.Google Scholar
Feldman, M. and Reed, W. B. 1974. Distribution of wild oat seeds during cereal crop swathing and combining. Pages 110 in 1974 Annual meeting of the Canadian Society of Agricultural Engineering. Laval University, Ste. Foy, PQ.Google Scholar
Fleet, B. and Gill, G. 2012. Seed Dormancy and Seedling Recruitment in Smooth Barley (Hordeum murinum ssp. glaucum) Populations in Southern Australia. Weed Sci. 60:394400.Google Scholar
Forcella, F., Peterson, D. H., and Barbour, J. C. 1996. Timing and measurement of weed seed shed in corn (Zea mays). Weed Technol. 10:535543.Google Scholar
Gill, G. S. 1996. Managment of herbicide resistant ryegrass in Western Australia—research and its adoption. Pages 542545 in Shepherd, R.C.H., ed. 11th Australian Weeds conference. Melbourne, Victoria, Australia Weed Science Society of Victoria.Google Scholar
Gill, G. S. and Holmes, J. E. 1997. Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum . Pestic. Sci. 51:352358.Google Scholar
Heap, I. M. 2013. The International survey of herbicide resistant weeds. http://www.weedscience.com. Accessed January 2013.Google Scholar
Jana, S. and Thai, K. M. 1987. Patterns of changes of dormant genotypes in Avena fatua populations under different agricultural conditions. Can. J. Bot. 65:17411745.Google Scholar
Jordan, N. R. and Jannink, J. L. 1997. Assessing the practical importance of weed evolution: a research agenda. Weed Res. 37:237246.Google Scholar
Kleemann, S.G.L. and Gill, G. S. 2006. Differences in the distribution and seed germination behaviour of populations of Bromus rigidus and Bromus diandrus in South Australia: adaptations to habitat and implications for weed management. Aust. J. Agric. Res. 57:213219.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50:773786.Google Scholar
Matthews, J. M., Llewellyn, R., Powles, S., and Reeves, T. 1996. Integrated weed management for the control of herbicide resistant annual ryegrass. Pages 417420 in Proceedings of the 8th Australian Agronomy Conference, Toowoomba, Queensland, Australia, 30 January to 2 February, 1996. Toowoomba, Australia Australian Society of Agronomy.Google Scholar
McGowan, A. 1970. Comparative germination patterns of annual grasses in north-eastern Victoria. Aust. J. Exp. Agric. 10:401404.Google Scholar
Metz, R. 1969. Causes of the increasing spread of wild oats (Avena fatua) and some field hygiene measures for destroying or eliminating wild oat seeds. NachBL dt PflSchutzdienst Berl. 24:8588.Google Scholar
Monaghan, N. M. 1980. The biology and control of Lolium rigidum as a weed of wheat. Weed Res. 20:117121.Google Scholar
Mortimer, A. M. 1997. Phenological adaptation in weeds—an evolutionary response to the use of herbicides? Pestic. Sci. 51:299304.Google Scholar
Norris, R. F. 2007. Weed fecundity: Current status and future needs. Crop Prot. 26:182188.Google Scholar
Owen, M., Walsh, M. J., Llewellyn, R., and Powles, S.B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58:711718.Google Scholar
Owen, M. J., Martinez, N., and Powles, S. B. 2013. Multiple herbicide resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. in review.Google Scholar
Owen, M. J., Michael, P. J., Renton, M., Steadman, K. J., and Powles, S. B. 2011. Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed Res. 51:133141.Google Scholar
Pearce, G. A. and Holmes, J. E. 1976. The control of annual ryegrass. J. Agric. West. Aust. 17:7782.Google Scholar
Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): the driving force for the adoption of integrated weed management. Pages 7587 in Denholm, I., Devonshire, A., Holloman, D., eds. Achievements and Development in combating Combating Pesticide Resistance. London SCI: Elsevier.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in Action: Plants Resistant to Herbicides. Pages 317347 in Merchant, S., Briggs, W.R., Ort, D., eds. Annual Review of Plant Biology, Vol 61. Palo Alto Annual Reviews.Google Scholar
Reeves, T. G. and Smith, I. S. 1975. Pasture management and cultural methods for the control of annual ryegrass (Lolium rigidum) in wheat. Aust. J. Exp. Agric. Anim. Husb. 15:527530.Google Scholar
Shirtliffe, S. J. and Entz, M. H. 2005. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 53:465470.Google Scholar
Shirtliffe, S. J., Entz, M. H. and Van Acker, R. C. 2000. Avena fatua development and seed shatter as related to thermal time. Weed Sci. 48:555560.Google Scholar
Stedman. 1996. Stedman Cage Mill Primer. http://www.stedman-machine.com/index.htm. Accessed January 2013.Google Scholar
Walsh, M. J., Duane, R. D., and Powles, S. B. 2001. High frequency of chlorsulfuron-resistant wild radish (Raphanus raphanistrum) populations across the Western Australian wheatbelt. Weed Technol. 15:199203.Google Scholar
Walsh, M. J., Harrington, R. B., and Powles, S. B. 2012. Harrington seed destructor: A new nonchemical weed control tool for global grain crops. Crop Sci. 52:13431347.Google Scholar
Walsh, M. J. and Newman, P. 2007. Burning narrow windrows for weed seed destruction. Field Crop Res. 104:2440.Google Scholar
Walsh, M. J., Owen, M. J., and Powles, S. B. 2007. Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australia wheatbelt. Weed Res. 47:542550.Google Scholar
Walsh, M. J. and Powles, S. B. 2007. Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol. 21:332338.Google Scholar
Wilson, B. J. 1970. Studies on the shedding of seed of Avena fatua in various cereal crops and the presence of the seed in the harvested matter. Pages 831836 in Proceedings of the 10th Brighton Weed Control Conference. Croydon, Great Britain British Crop Protection Council.Google Scholar
Zimdahl, R. L. 1988. The concept and appliation of the critical weed-free period. Pages 145155 in Altieri, M.A., Liebman, M., eds. Weed managment in Agroecosystems: Ecological approaches. Boca Raton, FL CRC.Google Scholar