Acessibilidade / Reportar erro

Visuospatial processing: A review from basic to current concepts

PROCESSAMENTO VISUOESPACIAL: UMA REVISÃO DE CONCEITOS BÁSICOS A ATUAIS

ABSTRACT

Introduction:

Visuospatial processing is a fundamental aspect in human cognition, belonging to a complex and intricate network. It is, in other words, one of the building blocks of an individual's identity and behavior.

Objective:

To allow an overall and updated review of visuospatial processing and its related events, in light of new techniques and evidence, focusing on basic concepts of higher cortical functions, its pathways and associated systems.

Methods:

The study was conducted based on the national and international databases LILACS, MEDLINE, ScieLo and Pubmed; using the search word "visuospatial" in combination with "pathway", "processing", "function", "fMRI" and "attention".

Results:

A total of 77 references deemed relevant for its historical, conceptual or updated relevance were selected out of 1222 retrieved; including English, Spanish and Portuguese languages. A critical review was carried out and many new aspects discussed.

Conclusion:

A new functioning and construction of sight processing is being shaped, culminating now in a model based on dynamic and integrated interactions between pathways and systems.

Key words
visuospatial functions; processing; pathway; function

RESUMO

Introdução.

O processamento visuoespacial é um aspecto fundamental da cognição humana, pertencendo a uma complexa e intricada rede. É, em outras palavras, uma das pedras fundamentais da identidade e comportamento de um indivíduo.

Objetivo:

Permitir uma revisão geral e atualizada do processamento visuoespacial e seus eventos relacionados, à luz de novas técnicas e evidências, com foco em conceitos básicos da organização das funções corticais superiores, suas principais vias e sistemas envolvidos.

Métodos:

O estudo foi conduzido em bases de dados nacionais e internacionais LILACS, MEDLINE, SciELO e PubMed; utilizando a palavra "visuoespacial" em combinação com "via", "processamento", "função", "fMRI" e "atenção".

Resultados:

Um total de 77 referências consideradas relevantes por sua importância histórica, conceitual e atual foram selecionadas à partir de 1222, incluindo as línguas inglesa, espanhola e portuguesa.

Conclusão:

Uma nova construção e funcionamento do processamento visual estão sendo criados, culminando em um modelo baseado em interações dinâmicas e integradas entre vias e sistemas.

Palavras-chave
funções visuoespaciais; processamento; via; função

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERENCES

  • 1
    Mesulam M. From sensation to cognition. Brain 1998; 121: 1013-1052.
  • 2
    Mesulam M. Principles of behavioural and cognitive neurology. 2 ed. New York: Oxford, 2000.
  • 3
    Hahn B, Ross TJ, Stein EA. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 2006;32:842-853.
  • 4
    Broca P. Perte de la parole, ramollisement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bull Soc Anthropol (Paris) 1861;2:235-238.
  • 5
    Garcia-Molina A. Aproximación histórica a las alteraciones comportamentales por lesiones del córtex prefrontal: de Phineas Gage a Luria. Rev Neurol 2008;46:175-181.
  • 6
    Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry. 1957; 20:11-21
  • 7
    Mesulam M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 2012;62:2182-2189.
  • 8
    Catani M, Ffytche D.H. The rises and falls of disconnection syndromes. Brain 2005; 128: 2224-2239.
  • 9
    Geschwind N. Disconnexion syndromes in animals and man. I. Brain 1965;88:237-294.
  • 10
    Geschwind N. Disconnexion syndromes in animals and man. II. Brain 1965;88:585-644.
  • 11
    Mountcastle VB. Modality and topographic properties of cat's somatic sensory cortex. J Neurophysiol 1957;20:408-434.
  • 12
    Insausti R. Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 1993;3:19-26.
  • 13
    Horton JC, Adams DL. The cortical column: a structure without a function. Phil Trans R Soc B 2005;360:837-862.
  • 14
    Mountcastle VB. The columnar organization of the neocortex. Brain 1997;120:701-722.
  • 15
    Leopold D. A. Primary visual cortex, awareness and blindsight. Annu Rev Neurosci 2012;35:91-109.
  • 16
    DeYoe EA, Van Essen DC. Concurrent processing streams in monkey visual cortex. Trends Neurosci 1988;11:219-226.
  • 17
    Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. Neuron 2007;56:366-383.
  • 18
    Ohki K, Chung S, Chang YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005;433:597-603.
  • 19
    Gattass R, Gross CG. Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 1981;46:621-638.
  • 20
    Gattass R, Sousa AP, Gross CG. Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 1988;8:1831-1845.
  • 21
    Kastner S, DeWeerd P, Pinsk MA, Elizondo MI. Desimone R, Ungerleider LG. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 2001;86:1398-1411.
  • 22
    Ungerleider LG, MishkinM. Two Cortical Visual Systems. Analysis of visual behavior. The MIT Press; 1982.
  • 23
    Mishkin M, Ungerleider LG, Macko K. Object vision and spatial vision: two cortical pathways. Trends Neurosci 1983;6:414-417.
  • 24
    Macko KA, Jarvis CD, Kennedy C, et al. Mapping the primate visual system with [2-14C]deoxyglucose. Science 1982;218:394-397.
  • 25
    Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 2010;4:277-290.
  • 26
    Barrash J, Damasio H, Adolphs R, Tranel D. The neuroanatomical correlates of route learning impairment. Neuropsychologia 2000;38:820-836.
  • 27
    Webster MJ, Bachevalier J, Ungerleider LG. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 1994;4:470-483.
  • 28
    Aguirre GK, D'Esposito M. Topographical disorientation: a synthesis and taxonomy. Brain 1999;122:1613-1628.
  • 29
    Harel A, Kravitz DJ, Baker CI. Deconstructing visual scenes in cortex: gradients of object and spatial layout information. Cereb Cortex 2013;23:947-957.
  • 30
    Kravitz JD, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci 2011;12:217-230.
  • 31
    Kim JS, Jung WH, Kang DH, et al. Changes in effective connectivity according to working memory load: A fMRI study of face and location working memory tasks. Psychiatry Investig. 2012;9:283-292.
  • 32
    Navalpakkam V. Koch C. Rangel A. Perona P. Optimal reward harvesting in complex perceptual environments. PNAS 2010;107:5232-5237.
  • 33
    Galletti C, Gamberini M. Kutz DF, Fattori P, Luppino G, Matelli M. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 2001;13:1572-1588.
  • 34
    Chafee MV, Goldman-Rakic PS. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 2000;83:1550-1566.
  • 35
    Gail A, Klaes C, Westendorff S. Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and pre-motor cortex. J Neurosci 2009;29:9490-9499.
  • 36
    Gamberini M, Passarelli L, Fattori P. et al. Cortical connections of the visuomotor parieto-occipital area V6Ad of the macaque monkey. J Comp Neurol 2009;513: 622-642.
  • 37
    Margulies DS, Vincent JL, Kelly C. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci 2009; 106:20069-20074.
  • 38
    Rozzi S, Calzavara R, Belmalih A. et al. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 2006;16:1389-1417.
  • 39
    McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML. Saccade reward signals in posterior cingulate cortex. Neuron 2003;40:1031-1040.
  • 40
    Dean HL, Platt ML. Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J Neurosci 2006;26:1117-1127.
  • 41
    Small DM, Gitelman, DR, Gregory, MD. et al. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 2003;18:633-641.
  • 42
    Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nature Rev Neurosci 2009;10:792-802.
  • 43
    Suthana NA, Ekstrom AD, Moshirvaziri S, Knowlton B, Bookheimer SY. Human hippocampal CA1 involvement during allocentric encoding of spatial information. J Neurosci 2009;29:10512-10519.
  • 44
    O'Keefe J, Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature 1996;381:425-428.
  • 45
    Hassabis D,Chu C, Rees G, Weiskopf N, Molyneux PD, Maguire EA. Decoding neuronal ensembles in the human hippocampus. Curr Biol 2009;19:546-554.
  • 46
    Wilson FA, Scalaidhe SP, Goldman-Rakic PS. Dissociation of object and spatial processing domains in primate pre-frontal cortex. Science 1993;260:1955-1958.
  • 47
    Deco G, Lee TS. The role of early visual cortex in visual integration: a neural model of recurrent interaction. Eur J Neurosci 2004;20:1089-1100.
  • 48
    Arcaro MJ, McMains S, Singer B, Kastner S. Retinotopic organization of human ventral visual cortex. J Neurosci 2009;29:10638-10652.
  • 49
    Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway, an expanded neural framework for the processing of object quality. Trends Cogn Sci 2013;17:26-49.
  • 50
    Saleem KS, Suzuki W, Tanaka K, Hashikawa T. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 2000;20:5083-5101.
  • 51
    Barton JJ, Press DZ, Keenan JP, O'Connor M. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 2002;58:71-78.
  • 52
    Chao LL, Martin A. Representation of manipulable man-made objects in the dorsal stream. NeuroImage 2000;12:478-484.
  • 53
    Peeters R, Simone L, Nelissen K, et al. The representation of tool use in humans and monkeys: Common and uniquely human features. J Neurosci 2009;29:11523-11539
  • 54
    Schneider WX. Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory. Philos Trans R Soc Lond B Biol Sci. 2013;368(1628):20130060.
  • 55
    Culham JC, Valyear KF. Human parietal cortex in action. Curr Opin Neurobiol 2006;16:205-212.
  • 56
    Levy I, Schluppeck D, Heeger DJ, Glimcher PW. Specificity of human cortical areas for reaches and saccades. J Neurosci 2007;27:4687-4696.
  • 57
    Hagler DJ. Jr, Riecke L., Sereno MI. Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 2007; 35:1562-1577.
  • 58
    Krauzlis RJ, Lovejoy LP, Zenon A. Superior colliculus and visual spatial attention. Annu Rev Neurosci 2013;36:165-182.
  • 59
    Bundesen C, Habekost T, Kyllingsbæk S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol Rev 2005; 112:291-328.
  • 60
    Petersen SE. Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci 2012;35:73-89.
  • 61
    Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 2000;23:315-341.
  • 62
    Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 2000;40:1489-1506.
  • 63
    Anderson BA, Folk CL. Variations in the magnitude of attentional capture: testing a two-process model. Atten Percept Psychophys 2010; 72:342-352.
  • 64
    Eimer M, Kiss M. Involuntary attentional capture is determined by task set: evidence from event related brain potentials. J Cogn Neurosci 2008;20:1423-1433.
  • 65
    Yin X, Zhao L, Xu J, et al. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe. PLoS ONE 2012;7:e50590.
  • 66
    Corbetta M, Akbudak E, Conturo TE. et al. A common network of functional areas for attention and eye movements. Neuron 1998;21:761-773.
  • 67
    Thompson KG, Biscoe KL, Sato TR. Neuronal basis of covert spatial attention in the frontal eye field. J Neurosci 2005;25:9479-9487.
  • 68
    Schafer RJ, Moore T. Attention governs action in the primate frontal eye field. Neuron 2007;56:541-551.
  • 69
    Lindner A, Iyer A, Kagan I, Andersen RA. Human posterior parietal cortex plans where to reach and what to avoid. J Neurosci 2010;30:11715-11725.
  • 70
    Vossel S, Weidner R, Driver J, Friston KJ, Fink GR. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. J Neurosci 2012;32):10637-10648.
  • 71
    Posner MI. Imaging attention networks. Neuroimage 2012;61:450-456.
  • 72
    Shomstein S. Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control. Front Integ Neuroscience 2012;6:38.
  • 73
    Duncan J. The locus of interference in the perception of simultaneous stimuli. Psychol Rev 1980;87:272-300.
  • 74
    Hampton AN, O'Doherty JP. Decoding the neural substrates of reward-related decision making with functional MRI. Proc Natl Acad Sci 2007;104:1377-1382.
  • 75
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci 2008;105:12569-12574.
  • 76
    Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev 2001;108:624-652.
  • 77
    Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000;4:215-222.

Publication Dates

  • Publication in this collection
    Apr-Jun 2014

History

  • Received
    20 Mar 2014
  • Accepted
    30 May 2014
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br