IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Research on Lightweight Acoustic Scene Perception Method Based on Drunkard Methodology
Wenkai LIULin ZHANGMenglong WUXichang CAIHongxia DONG
Author information
JOURNAL FREE ACCESS

2024 Volume E107.D Issue 1 Pages 83-92

Details
Abstract

The goal of Acoustic Scene Classification (ASC) is to simulate human analysis of the surrounding environment and make accurate decisions promptly. Extracting useful information from audio signals in real-world scenarios is challenging and can lead to suboptimal performance in acoustic scene classification, especially in environments with relatively homogeneous backgrounds. To address this problem, we model the sobering-up process of “drunkards” in real-life and the guiding behavior of normal people, and construct a high-precision lightweight model implementation methodology called the “drunkard methodology”. The core idea includes three parts: (1) designing a special feature transformation module based on the different mechanisms of information perception between drunkards and ordinary people, to simulate the process of gradually sobering up and the changes in feature perception ability; (2) studying a lightweight “drunken” model that matches the normal model's perception processing process. The model uses a multi-scale class residual block structure and can obtain finer feature representations by fusing information extracted at different scales; (3) introducing a guiding and fusion module of the conventional model to the “drunken” model to speed up the sobering-up process and achieve iterative optimization and accuracy improvement. Evaluation results on the official dataset of DCASE2022 Task1 demonstrate that our baseline system achieves 40.4% accuracy and 2.284 loss under the condition of 442.67K parameters and 19.40M MAC (multiply-accumulate operations). After adopting the “drunkard” mechanism, the accuracy is improved to 45.2%, and the loss is reduced by 0.634 under the condition of 551.89K parameters and 23.6M MAC.

Content from these authors
© 2024 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top