Open Access Open Access  Restricted Access Subscription or Fee Access

Biogas Production from Community Waste to Optimise the Substrate for Anaerobic Digestion


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i7.15014

Abstract


Worldwide, large quantities of waste are generated from human settlements. Anaerobic digestion (AD) of the produced community waste for biogas production is an apt solution for an efficient recycling and for a mitigation of the GHG (green house gas) emission for a clean environment. But, AD is affected by some factors namely, the composition of the substrate, the operational parameters and the type of digesters. The optimisation of the foresaid factors will enhance the performance of the anaerobic digesters and it will mitigate the release of noxious gases. Hence, current study efforts have been made, in order to study the biogas production from the anaerobic digestion of  organic canteen leftover in different combinations of  vegetable waste (VW), banana peel (BP), banana stalk (BS), food waste(FW) and spent tea waste (TW) for substrate optimisation. Tea waste has been used as a common input with all the combinations. Fabricated biogas digesters of one litre capacity have been designed and the daily recordings of gas production have been noted by the water displacement method. Statistical analysis has been done, by using IBM Statistics tool, in order to compare the actual and the predicted yield from the different combinations of the substrate. The [cow dung + (vegetable left over +tea waste)] with T3 =50%CD + [50% (VW +TW)] combination has yielded better result with a gas yield of 3.75 litres of biogas throughout the experimental period. Maximum gas production and methane yield has been observed for food waste followed by vegetables leftover. Variation in the pH of the digester has been the major limitation and a concrete research needs to be carried out to evolve strategies to stabilise the pH for optimised AD
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Anaerobic Digestion; Biogas Production; Statistical Analysis; Community Waste; Organic Canteen Leftovers

Full Text:

PDF


References


Joshi, R. and Ahmed, S., 2016. Status and challenges of municipal solid waste management in India: A review. Cogent environmental science, 2(1), p.1139434.
http://dx.doi.org/10.1080/23311843.2016.1139434

Saikia, D. and Nath, M. J., 2015. Integrated solid waste management model for developing country with special reference to Tezpur municipal area, India. International Journal of Innovative Research and Development, 4(2).
http://dx.doi.org/10.1007/978-94-007-3010-6_232

Varma, R. A., 2007. Status of municipal solid waste generation in Kerala and their characteristics. Thiruvananthapuram: Centre for Earth Science Studies.

Ho, W. S., Hashim, H., Lim, J. S., Lee, C. T., Sam, K. C. and Tan, S. T., 2017. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. Applied Energy, 185, pp.1481-1489.
http://dx.doi.org/10.1016/j.apenergy.2016.01.044

Knol, W., Van Der Most, M. M. and De Waart, J., 1978. Biogas production by anaerobic digestion of fruit and vegetable waste. A preliminary study. Journal of the Science of Food and Agriculture, 29(9), pp.822-830.
http://dx.doi.org/10.1002/jsfa.2740290913

Masebinu, S. O., Akinlabi, E. T., Muzenda, E., Aboyade, A.O. and Mbohwa, C., 2018. Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Management, 75, pp. 236-250.
http://dx.doi.org/10.1016/j.wasman.2018.02.011

Nzila, A., 2017. Mini review: update on bioaugmentation in anaerobic processes for biogas production. Anaerobe, 46, pp.3-12.
http://dx.doi.org/10.1016/j.anaerobe.2016.11.007

Pavi, S., Kramer, L. E., Gomes, L. P. and Miranda, L. A. S., 2017. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource technology, 228, pp.362-367.
http://dx.doi.org/10.1016/j.biortech.2017.01.003

Chintalapati Gowtham Varma, Enhancing Biogas Production by Co-Digestion of Livestock Manures, Master Thesis for The Degree Of Master Of Veterinary Science from KVAS, 2017.

Jena, S. P., Mishra, S., Acharya, S. K. and Mishra, S. K., 2017. An experimental approach to produce biogas from semi dried banana leaves. Sustainable Energy Technologies and Assessments, 19, pp.173-178.
http://dx.doi.org/10.1016/j.seta.2017.01.001

De Clercq, D., Wen, Z. and Fan, F., 2017. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy. Journal of environmental management, 189, pp.115-124.
http://dx.doi.org/10.1016/j.jenvman.2016.12.030

Phetyim, N., Wanthong, T., Kannika, P. and Supngam, A., 2015. Biogas production from vegetable waste by using dog and cattle manure. Energy Procedia, 79, pp.436-441.
http://dx.doi.org/10.1016/j.egypro.2015.11.515

Munda, U.S., Pholane, L., Kar, D.D. and Meikap, B.C., 2012. Production of bioenergy from composite waste materials made of corn waste, spent tea waste, and kitchen waste co-mixed with cow dung. International journal of green energy, 9(4), pp.361-375.
http://dx.doi.org/10.1080/15435075.2011.621492

Hagos, K., Zong, J., Li, D., Liu, C. and Lu, X., 2017. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, pp.1485-1496.
http://dx.doi.org/10.1016/j.rser.2016.11.184

Sagagi, B., Garba, B. and Usman, N., 2009. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences, 2(1), pp.115-118.
http://dx.doi.org/10.4314/bajopas.v2i1.58513

Liu, C., Wachemo, A.C., Tong, H., Shi, S., Zhang, L., Yuan, H. and Li, X., 2018. Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresource technology, 261, pp.93-103.
http://dx.doi.org/10.1016/j.biortech.2017.12.076

Meng, X., Yuan, X., Ren, J., Wang, X., Zhu, W. and Cui, Z., 2017. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses. Bioresource technology, 241, pp.1050-1059.
http://dx.doi.org/10.1016/j.biortech.2017.05.181

Pohland, F. G. and Ghosh, S., 1971. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environmental letters, 1(4), pp.255-266.
http://dx.doi.org/10.1080/00139307109434990

Li, D., Chen, L., Liu, X., Mei, Z., Ren, H., Cao, Q. and Yan, Z., 2017. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresource technology, 245, pp.90-97.
http://dx.doi.org/10.1016/j.biortech.2017.07.098

Adinurani, P. G., Setyobudi, R. H., Wahono, S. K., Mel, M., Nindita, A., Purbajanti, E., Sisbudi, S., Harsono, A. R. M., Nelwan, L. O. and Sasmito, A., Ballast Weight Review of Capsule Husk Jatropha curcas Linn. on Acid Fermentation First Stage in Two Phase Anaerobic Digestion. B. Life and Environmental Sciences, p.47.

Liu, C., Luo, G., Wang, W., He, Y., Zhang, R. and Liu, G., 2018. The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation. Fuel, 224, pp.537-544.
http://dx.doi.org/10.1016/j.fuel.2018.03.125

Bouallagui, H., Touhami, Y., Cheikh, R. B. and Hamdi, M., 2005. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process biochemistry, 40(3-4), pp.989-995.
http://dx.doi.org/10.1016/j.procbio.2004.03.007

Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C. and Gamble, P., 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource technology, 98(4), pp.929-935.
http://dx.doi.org/10.1016/j.biortech.2006.02.039

Florkowski, W. J., Us, A. and Klepacka, A. M., 2018. Food waste in rural households support for local biogas production in Lubelskie Voivodship (Poland). Resources, Conservation and Recycling, 136, pp.46-52.
http://dx.doi.org/10.1016/j.resconrec.2018.03.022

Nathoa, C., Sirisukpoca, U. and Pisutpaisal, N., 2014. Production of hydrogen and methane from banana peel by two phase anaerobic fermentation. Energy Procedia, 50, pp.702-710.
http://dx.doi.org/10.1016/j.egypro.2014.06.086

Ahmad, T. and Danish, M., 2018. Prospects of banana waste utilization in wastewater treatment: A review. Journal of environmental management, 206, pp.330-348.
http://dx.doi.org/10.1016/j.jenvman.2017.10.061

Anand, V., Chanakya, H. N. and Rajan, M. G. C., 1991. Solid phase fermentation of leaf biomass to biogas. Resources, conservation and recycling, 6(1), pp.23-33.
http://dx.doi.org/10.1016/0921-3449(91)90003-7

Valenti, F., Zhong, Y., Sun, M., Porto, S. M., Toscano, A., Dale, B. E., Sibilla, F. and Liao, W., 2018. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in Southern Italy. Waste Management, 78, pp.151-157.
http://dx.doi.org/10.1016/j.wasman.2018.05.037

Yiqing Yao, 2016 “Effect of Illumination on the Metabolic Pathways in Anaerobic Digestion”. EC Bacteriology and Virology Research 2.2, pp.70-72.

Sajeena Beevi, B., Madhu, G. and Sahoo, D. K., 2015. A Study of Single Stage Semi Dry Anaerobic Digestion of Organic Fraction of Municipal Solid Waste (Doctoral dissertation, Cochin University Of Science And Technology).


Chandra, R., Vijay, V. K., Subbarao, P. M. V. and Khura, T. K., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148-159.
http://dx.doi.org/10.1016/j.apenergy.2010.10.049

Pu, C., Liu, H., Ding, G., Sun, Y., Yu, X., Chen, J., Ren, J. and Gong, X., 2018. Impact of direct application of biogas slurry and residue in fields: in situ analysis of antibiotic resistance genes from pig manure to fields. Journal of hazardous materials, 344, pp.441-449.
http://dx.doi.org/10.1016/j.jhazmat.2017.10.031

Mata-Alvarez, J., Mace, S. and Llabres, P., 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource technology, 74(1), pp.3-16.
http://dx.doi.org/10.1016/s0960-8524(00)00023-7

Viswanath, P., Devi, S.S. and Nand, K., 1992. Anaerobic digestion of fruit and vegetable processing wastes for biogas production. Bioresource technology, 40(1), pp.43-48.
http://dx.doi.org/10.1016/0960-8524(92)90117-g

Velmurugan, B., 2011. Anaerobic digestion of vegetable wastes for biogas production in a fed-batch reactor. International Journal of Emerging Sciences, 1(3), p.478.

Onwuliri FC, Onyimba IA, Nwaukwu IA (2013) Generation of Biogas from Cow Dung. J Bioremed Biodeg S18:002. doi:10.4172/2155-6199.S18-002
http://dx.doi.org/10.4172/2155-6199.s18-002

El-Mashad, H.M. and Zhang, R., 2010. Biogas production from co-digestion of dairy manure and food waste. Bio resource technology, 101(11), pp.4021-4028.
http://dx.doi.org/10.1016/j.biortech.2010.01.027

Asquer, C., Pistis, A. and Scano, E. A., 2013. Characterization of Fruit and Vegetable Wastes as a Single Substrate for the Anaerobic Digestion Extended Abstract. Environmental Engineering and Management Journal, 12(S11), pp.89-92.

Babaee, A. and Shayegan, J., 2011. Anaerobic digestion of vegetable waste. Chemical Engineering Transactions, 24, pp.1291-1296.

Saheed, O. K., Jamal, P., Karim, M. I. A., Alam, M. Z. and Muyibi, S. A., 2016. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion. Journal of King Saud University-Science, 28(2), pp.143-151.
http://dx.doi.org/10.1016/j.jksus.2015.08.002

Sambo, A. S., Etonihu, A. C. and Mohammed, A. M., 2015. Biogas Production from Co-digestion of Selected Agricultural Wastes in Nigeria. International Journal of Research–Granthaalayah, 3(11), p.7.
http://dx.doi.org/10.1016/0141-4607(83)90084-7

Chu, C. F., Li, Y. Y., Xu, K. Q., Ebie, Y., Inamori, Y. and Kong, H. N., 2008. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 33(18), pp.4739-4746.
http://dx.doi.org/10.1016/j.ijhydene.2008.06.060

Zhang, C., Su, H., Baeyens, J. and Tan, T., 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, pp.383-392.
http://dx.doi.org/10.1016/j.rser.2014.05.038

Li, R., Chen, S. and Li, X., 2010. Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Applied biochemistry and biotechnology, 160(2), pp.643-654.
http://dx.doi.org/10.1007/s12010-009-8533-z

Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L. and García, M. M., 2012. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste management, 32(10), pp.1821-1825
http://dx.doi.org/10.1016/j.wasman.2012.05.033

Meenashree, B., Vasanthi, V. J. and Mary, R. N. I., 2014. Evaluation of total phenolic content and antimicrobial activities exhibited by the leaf extracts of Musa acuminata (banana). International Journal of Current Microbiology and Applied Sciences, 3(5), pp.136-141.
http://dx.doi.org/10.20546/ijcmas.2017.610.072

Zhang C, Li J, Liu C, Liu X, Wang J, Li S, Fan G, Zhang L. Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresource technology. 2013 Dec 1;149:353-8.
http://dx.doi.org/10.1016/j.biortech.2013.09.070

Kalia, V. C., Sonakya, V. and Raizada, N., 2000. Anaerobic digestion of banana stems waste. Bioresource Technology, 73(2), pp. 191-19.
http://dx.doi.org/10.1016/s0960-8524(99)00172-8


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize