MicroRNAs As An Important Precursors of Diagnostic Obstetric Pathology

Cover Page


Cite item

Full Text

Abstract

MicroRNAs (miRs) are the class of short nucleotide sequences (21–27 nucleotides) RNA, non-coding protein synthesis. miRs are known as effective posttranscriptional negative regulators of gene expression with specific binding sites of targeted messenger RNA (mRNA) in the cytoplasm, providing translational repression or degradation of the target miR transcript. In this review we studied the role of miRNAs in the development of a physiological pregnancy and obstetric complications. The placenta is a unique organ which provides modulation of the immune system of the maternal organism during pregnancy including miRs which determine immunological tolerance of the body to the tissues of the fetus. Thus the «placental» miRs in maternal circulation may be the potential biomarker revealed at various obstetric pathology on the early stages before clinical manifestation of the diseases.

About the authors

N. V. Nizyaeva

Research Centre for Obstetrics, Gynaecology and Neonatology

Author for correspondence.
Email: Niziaeva@gmail.com
Moscow Russian Federation

N. E. Kan

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: N_kan@oparina4.ru
Moscow Russian Federation

V. L. Tyutyunnik

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: V_tioutiounnik@oparina4.ru
Moscow Russian Federation

N. A. Lomova

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: Natasha-lomova@yandex.ru
Moscow Russian Federation

M. N. Nagovitsyna

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: moremore84@mail.ru
Moscow Russian Federation

K. N. Prozorovskaya

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: ksenyap@inbox.ru
Moscow Russian Federation

A. I. Shchyogolev

Research Centre for Obstetrics, Gynaecology and Neonatology

Email: Ashegolev@oparina4.ru
Moscow Russian Federation

References

  1. Johnson C.D., Esquela-Kerscher A., Stefani G., Byrom M., Kelnar K., Ovcharenko D., Wilson M., Wang X., Shelton J., Shingara J., Chin L., Brown D., Slack F.J. The let 7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007; 67 (16): 7713–7722.
  2. Liu C., Kelnar K., Vlassov A.V., Brown D., Wang J., Tang D.G. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let 7. Cancer Res. 2012; 72 (12): 3393–3404.
  3. Grosshans H., Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008; 451 (7177): 414–416.
  4. Baek D., Villen J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. The impact of microRNAs on protein output. Nature. 2008; 455 (7209): 64–71.
  5. Hudson T.J., Anderson W., Aretz A., Barker A.D., Bell C., Bernabe R.R. et al. International Network of Cancer Genome projects. Nature. 2010; 464 (7291): 993–998.
  6. Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Wide spread changes in protein synthesis induced by microRNAs. Nature. 2008; 455 (7209): 58–63.
  7. Friedman R.C., Farh K.K., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of miRNAs. Genome Res. 2009; 19: 92–105.
  8. Marson A., Levine S.S., Cole M.F., Frampton G.M., Brambrink T., Johnstone S. Connecting microRNA genes to the core transcriptional regulatory circuitry of em bryonic stem cells. Cell. 2008; 134 (3): 521–533.
  9. Enquobahrie D.A., Abetew D.F., Sorensen T.K., Willoughby D., Chidambaram K., Williams M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet Gynecol. 2011; 204 (2): 12–21.
  10. Mayor-Lynn K., Toloubeydokhti T., Cruz A.C., Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci. 2011; 18 (1): 46–56.
  11. Luo S.S., Ishibashi O., Ishikawa G., Ishikawa T., Katayama A., Mishima T., Takizawa T., Shigihara T., Goto T., Izumi A., Ohkuchi A., Matsubara S., Takeshita T. villous trophoblasts express and secrete placenta specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 2009; 81 (4): 717–729.
  12. Taylor D.D., Gercel–Taylor C. MicroRNA signatures of tumor derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008; 110 (1): 13–21.
  13. Taylor E.L., Gant T.W. Emerging fundamental roles for non-coding RNA species in toxicology. Toxicology. 2008; 246 (1): 34–39.
  14. Chim S.S., Shing T.K., Hung E.C., Leung T.Y., Lau T.K., Chiu R.W., Lo Y.M. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 2008; 54 (3): 482–490.
  15. Miura K., Miura S., Yamasaki K., Higashijima A., Kinoshita A., Yoshiura K., Masuzaki H. Identification of pregnancy associated microRNAs in maternal plasma. Clin. Chem. 2010; 56 (11): 1767–1771.
  16. Donker R.B., Mouillet J.F., Chu T., Hubel C.A., Stolz D.B., Morelli A.E., Sadovsky Y. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol. Hum. Reprod. 2012; 18 (8): 417–424.
  17. Flor I., Neumann A., Freter C., Helmke B.M., Langenbuch M., Rippe V., Bullerdiek J. Abundant expression and hemimethylation of C19MC in cell cultures from placenta derived stromal cells. Biochem. Biophys. Res. Commun. 2012; 422: 411–416.
  18. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013; 304 (8): 836–843.
  19. Dai Y., Qiu Z., Diao Z., Shen L., Xue P., Sun H., Hu Y. MicroRNA–155 inhibits proliferation and migration of human extravillous trophoblast derived HTR–8/SVneo cells via down regulating cyclin D1. Placenta. 2012; 33 (10): 824–829.
  20. Kotlabova K., Doucha J, Hromadnikova I. Placental specific microRNA in maternal circulation identification of appropriate pregnancy associated microRNAs with diagnostic potential. J. Reprod. Immunol. 2011; 89 (2): 185–191.
  21. Lee D.C., Romero R., Kim J.S., Tarca A.L., Montenegro D., Pineles B.L., Kim E., Lee J., Kim S.Y., Draghici S,. Mittal P., Kusanovic J.P., Chaiworapongsa T., Hassan S.S., Kim C.J. MiR–210 targets iron sulfur cluster scaffold homologue in human trophoblast cell lines: siderosis of interstitial trophoblasts as a novel pathology of preterm preeclampsia and small for gestational age pregnancies. Am. J. Pathol. 2011; 179 (2): 590–602.
  22. Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N., Benjamin H., Kushnir M., Cholakh H., Melamed N. Serum microRNAs are promising novel biomarkers. PLoS One. 2008; 3 (9): 31–48.
  23. Zhao Y., Deng C., Wang J., Xiao J., Gatalica Z., Recker R.R., Xiao G.G. Let 7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 2011; 127 (1): 69–80.
  24. Sakurai M., Miki Y., Masuda M., Hata S., Shibahara Y., Hirakawa H., Suzuki, T., Sasano H. LIN28: a regulator of tumor suppressing activity of let 7 microRNA in human breast cancer. J
  25. Steroid Biochem. Mol. Biol. 2012; 131 (3–5): 101–106.
  26. Helland Å., Anglesio M.S, George J., Cowin P.A., Johnstone C.N., House C.M. Deregulation of MYCN, LIN28B and Let 7 in a molecular subtype of aggressive high grade serous ovarian. PLoS One. 2011; 6 (4): 18064.
  27. Nadiminty N., Tummala R., Lou W., Zhu Y., Shi X.B., Zou J.X. MicroRNA let 7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One. 2012; 7 (3): 32832.
  28. Li P., Guo W., Du L., Zhao J., Wang, Y., Liu, L., Hu Y., Hou Y. MicroRNA–29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin. Sci. 2013; 124 (1): 27–40.
  29. Kanasaki K., Kalluri R. The biology of preeclampsia. Kidney Int. 2009; 76: 831–837.
  30. Segura M.F., Hanniford D., Menendez S., Reavie L., Zou X., Alvarez-Diaz S., Zakrzewski J., Blochin E., Rose A., Bogunovic D., Polsky D., Wei J., Lee P., Belitskaya-Levy I., Bhardwaj N., Osman I., Hernando E. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia associated transcription factor. Proc. Natl. Acad. Sci. USA. 2009; 106 (6): 1814–1819.
  31. Burton G.J., Woods A.W., Jauniaux E., Kingdom J.C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009; 30 (6): 473–482.
  32. Magee L.А., Pels A., Helewa M., Rey E., von Dadelszen P. Diagnosis, evaluation and management of the hypertensive disorders of pregnancy: execultive summary. J. Obstet. Gynaecol. Can. 2014; 36 (5): 416–441.
  33. Steegers E.A., von Dadelszen P., Duvekot J.J., Pijnenborg R. Preeclampsia. Lancet. 2010; 376: 631–644.
  34. Pavlov K.A., Dubova E.A., Shchegolev A.I. Fetoplacental angiogenesis during normal pregnancy: a role of placental growth factor and angiopoietins. Akusherstvo i ginekologiya = Obstetrics and gynecology. 2010;6:10–15.
  35. Hershkovitz R., de Swiet M., Kingdom J. Midtrimester placentation assessment in high risk pregnancies using maternal serum screening and uterine artery Doppler. Hypertens Pregnancy. 2005; 24 (3): 273–280.
  36. Wang Y., Lewis D.F., Gu Y., Zhang Y., Alexander J.S., Granger D.N. Knight Placental trophoblast derived factors diminish endothelial barrier function. J. Clin. Endocrinol. Metab. 2004; 89 (5): 2421–2428.
  37. Duley L., Henderson-Smart D.J., King J.F. Antiplatelet agents for preventing and treating pre-eclampsia. Cochrane Database Syst. Rev. 2000; 2: CD000492.
  38. Santillan M.K., Santillan D.A., Sigmund C.D., Hunter S.K. From molecules to medicine: a future cure for preeclampsia? Drug News Perspect. 2009; 22 (9): 531–541.
  39. Crosby M.E., Kulshreshtha R., Ivan M., Glazer P.M. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009; 69 (3): 1221–1229.
  40. Lee Н., Chen C.Y., Au L.C. Single point mutation of microRNA may cause butterfly effect on alteration of global gene expression. Biochem. Biophys. Res. Commun. 2011; 404 (4): 1065–1069.
  41. Mouillet J.F., Chu T., Nelson D.M., Mishima T., Sadovsky Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 2010; 24 (6): 2030–2039.
  42. Huang X., Ding L., Bennewith K.L., Tong R.T., Welford S.M., Ang K.K. et al. Hypoxia inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell. 2009; 35 (6): 856–867.
  43. Chan S.Y., Loscalzo J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle. 2010; 9 (2): 1072–1083.
  44. Kelly T.J., Souza A.L., Clish C.B., Puigserver P. A hypoxia induced positive feedback loop promotes hypoxia inducible factor 1alpha stability through miR-210 suppression of glycerol-3 phosphate dehydrogenase 1 like. Mol .Cell Biol. 2011; 31 (13): 2696–2706.
  45. Kulshreshtha R., Ferracin M., Wojcik S.E., Garzon R., Alder H., Agosto-Perez F.J,, Davuluri R., Liu C.G., Croce C.M., Negrini M., Calin G.A., Ivan M. A microRNA signature of hypoxia. Mol. Cell. Biol. 2007; 27 (5): 1859–1867.
  46. Camps C., Buffa F.M., Colella S., Moore J., Sotiriou C., Sheldon H., Sheldon H., Harris A.L., Gleadle J.M., Ragoussis J. Нsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 2008; 14 (5): 1340–1348.
  47. Zhang Y., Fei M., Xue G., Zhou Q., Jia Y., Li L., Xin H., Sun S. Elevated levels of hypoxia inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J. Cell Mol. Med. 2012; 16 (2): 249–259.
  48. Muralimanoharan S., Maloyan A., Mele J., Guo C., Myatt L.G., Myatt L. MIR 210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta. 2012; 33 (10): 816–823.
  49. Anton L., Olarerin-George A.O., Schwartz N., Srinivas S., Bastek J., Hogenesch J.B., Elovitz M.A. MiR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 2013; 183 (5):1437–1445.
  50. Wang Q., Wang Y., Minto A.W., Wang J., Shi Q., Li X., Quigg R.J. MicroRNA-377 is upregulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008; 22 (12): 4126–4135.
  51. Law A.Y., Lai K.P., Lui W.C., Wan H.T., Wong C.K. Histone deacetylase inhibitor induced cellular apoptosis involves stanniocalcin-1 activation. Exp. Cell Res. 2008; 314 (16): 2975–2984.
  52. Bai Y., Yang W., Yang H.X., Liao Q., Ye G., Fu G., Ji L., Xu P., Wang H., Li Y. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression. PLoS One. 2012; 7 (6): 38875.
  53. Luo L., Ye G., Nadeem L., Fu G., Yang B.B., Honarparvar E., Honarparvar E., Dunk C., Lye S., Peng C. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 2012; 125 (Pt. 13): 3124–3132.
  54. Fu G., Ye G., Nadeem L., Ji L., Manchanda T., Wang Y., Lye S., Yang B.B., Peng C. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013; 61 (4): 864–872.
  55. Raffetto J.D., Khalil R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 2008; 75 (2): 346–359.
  56. Grammatopoulos D.K. Placental corticotrophin releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J. Neuroendocrinol. 2008; 20 (4): 432–438.
  57. Pineles B.L., Romero R., Montenegro D., Tarca A.L., Han Y.M., Kim Y.M., Draghici S., Espinoza J., Kusanovic J.P., Mittal P., Hassan S., Kim C.J. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am. J. Obstet Gynecol. 2007; 196 (3): 261.e1–e6.
  58. Zhu X.M., Han T., Sargent I.L., Yin G.W., Yao Y.Q. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am. J. Obstet Gynecol. 2009; 200 (6): 661. e1–e7.
  59. Chen D.B., Wang W. Human Placental MicroRNAs and Preeclampsia. Biol. Reproduc. 2013; 88 (5): 130.
  60. Ura B., Feriotto G., Monasta L., Bilel S., Zweyer M., Celeghini C. Potential role of circulating microRNAs as early markers of Preeclampsia. Taiwanese J. Obstetr. Gynecol. 2014; 53 (2): 232–234.
  61. Wulfken L.M., Moritz R., Ohlmann C., Holdenrieder S., Jung V., Becker F., Herrmann E., Walgenbach-Brunagel G., von Ruecker A., Müller S.C., Ellinger J. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011; 6 (9): 25787.
  62. Zeng Z.L, Li F.J., Gao F., Sun D.S., Yao L. Upregulation of miR-650 is correlated with down regulation of ING4 and progression of hepatocellular carcinoma. J. Surg. Oncol. 2013; 107 (2): 105–110.
  63. Wu W., Yang J., Feng X., Wang H., Ye S., Yang P., Tan W., Wei G., Zhou Y. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol. Cancer. 2013; 12: 30.
  64. Pollari S., Leivonen S. K., Perala M., Fey V., Kakonen S. M., Kallioniemi O. Identification of microRNAs inhibiting TGF- induced IL-11 production in bone metastatic breast cancer cells. PLoS One. 2012; 7 (5): 37361.
  65. Tsuruta T., Kozaki K., Uesugi A., Furuta M., Hirasawa A., Imoto I., Susumu N., Aoki D., Inazawa J. MiR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011; 71 (20): 6450–6462.
  66. White N.M., Khella H.W., Grigull J., Adzovic S., Youssef Y.M., Honey R.J., Stewart R., Pace K.T., Bjarnason G.A., Jewett M.A., Evans A.J. MiRNA profiling in metastatic renal cell carcinoma reveals a tumour suppressor effect for miR-215. Brit. J. Cancer. 2011; 105 (11): 1741–1749.
  67. Choi S.Y., Yun J., Lee O.J., Han H.S., Yeo M.K., Lee M.A. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA based microarray. Placenta. 2013; 34 (9): 799–804.
  68. Guo Y., Ying L., Tian Y., Yang P., Zhu Y., Wang Z. МiR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013; 280 (18): 4531–4538.
  69. Iwaya T., Yokobori T., Nishida N., Kogo R., Sudo T., Tanaka F., Shibata K., Sawada G., Takahashi Y., Ishibashi M., Wakabayashi G., Mori M., Mimori K. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis. 2012; 33 (12): 2391–2397.
  70. Zhang Y., Wang X., Xu B., Wang B., Wang Z., Liang Y., Zhou J. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol. Rep. 2013; 30 (4): 1976–1984.
  71. Gong M., Ma J., Guillemette R., Zhou M., Yang Y., Hock J.M., Ma J. МiR-335 inhibits small cell lung cancer bone metastases via IGF-1R and RANKL pathways. Mol. Cancer Res. 2014; 12 (1): 101–110.
  72. Shin K.H., Pucar A., Kim R.H., Bae S.D., Chen W., Kang M.K., Park N.P. Identification of senescence-inducing microRNAs in normal human keratinocytes. Int. J. Oncol. 2011; 39 (5): 1205–1211.
  73. Zhong G., Cheng X, Long H., He L., Qi W., Xiang T., Zhao Z., Zhu B. Dynamically expressed microRNA-15b modulates the activities of CD8+ T lymphocytes in mice with Lewis lung carcinoma. J. Transl. Med. 2013; 11: 71.
  74. Imam J.S., Plyler J.R., Bansal H., Prajapati S., Bansal S., Rebeles J., Chen H.I., Chang Y.F. Genomic loss of tumor suppressor miRNA–204 promotes cancer cell migration and invasion
  75. by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 2012; 7 (12): 52397.
  76. Mouillet J.F., Chu T., Hubel C.A., Nelson D.M., Parks W.T., Sadovsky Y. The levels of hypoxia regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010; 31 (9): 781–784.
  77. Higashijima A., Miura K., Mishima H., Kinoshita A., Jo O., Abe S., Hasegawa Y, Miura S., Masuzaki H. Characterization of placentaspecific microRNAs in fetal growth restriction pregnancy. Prenat. Diagn. 2013; 33 (3): 214–222.
  78. Pavlov K.A., Dubova E.A., Shchegolev A.I. Fetoplacental angiogenesis during normal pregnancy: a role of vascular endothelial growth factor. Akusherstvo i ginekologiya = Obstetrics and gynecology. 2011;3:11–16.
  79. Shchegolev A.I., Dubova E.A., Pavlov K.A. Morfologiya platsenty [Morphology of the Placenta]. Moscow, 2010. 46 p.
  80. Li X., Li C., Dong X., Gou W. MicroRNA-155 inhibits migration of trophoblast cells and contributes to the pathogenesis of severe preeclampsia by regulating endothelial nitric oxide synthase. Mol. Med. Rep. 2014; 10 (1): 550–554.
  81. Dabelea D., Snell-Bergeon J.K., Hartsfield C.L., Bischoff K.J., Hamman R.F., McDuffie R.S. Increasing Prevalence of Gestational Diabetes Mellitus (GDM) Over Time and by Birth Cohort. Diabets Care. 2005; 28 (3); 579–584.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies