Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

OIL: Observational Imitation Learning

https://sites.google.com/kaust.edu.sa/oil/

Guohao Li*, Matthias Miiller*, Vincent Casser, Neil Smith, Dominik L. Michels, Bernard Ghanem
Visual Computing Center, KAUST, Thuwal, Saudi Arabia

{guohao.li, matthias.mueller.2, vincent.casser, neil.smith, dominik.michels, bernard.ghanem}@kaust.edu.sa

Abstract—Recent work has explored the problem of au-
tonomous navigation by imitating a teacher and learning an end-
to-end policy, which directly predicts controls from raw images.
However, these approaches tend to be sensitive to mistakes by the
teacher and do not scale well to other environments or vehicles.
To this end, we propose Observational Imitation Learning (OIL),
a novel imitation learning variant that supports online training
and automatic selection of optimal behavior by observing mul-
tiple imperfect teachers. We apply our proposed methodology
to the challenging problems of autonomous driving and UAV
racing. For both tasks, we utilize the Sim4CV simulator [23] that
enables the generation of large amounts of synthetic training data
and also allows for online learning and evaluation. We train a
perception network to predict waypoints from raw image data
and use OIL to train another network to predict controls from
these waypoints. Extensive experiments demonstrate that our
trained network outperforms its teachers, conventional imitation
learning (IL) and reinforcement learning (RL) baselines and even
humans in simulation.

I. INTRODUCTION

In the machine learning community, solving complex se-
quential prediction problems usually follows one of two dif-
ferent paradigms: reinforcement learning (RL) or supervised
learning (SL), more specifically imitation learning (IL). On the
one hand, the learner in conventional IL is required to trust
and replicate authoritative behaviors of a teacher. The draw-
backs are primarily the need for extensive manually collected
training data and the inherent subjectivity to potential negative
behaviors of teachers, since in many realistic scenarios they are
imperfect. On the other hand, RL does not specifically require
supervision by a teacher, as it searches for an optimal policy
that leads to the highest eventual reward. However, a good
reward function, which offers the agent the opportunity to learn
desirable behaviors, requires tedious and meticulous reward
shaping [26]. Recent methods have used RL to learn sim-
pler tasks without supervision [6], but they require excessive
training time and a very fast simulation (e.g. 1 000 fps). In this
paper, we demonstrate that state-of-the art performance can be
achieved by incorporating RL concepts into direct imitation to
learn only the successful actions of multiple teachers. We call
this approach Observational Imitation Learning (OIL). Unlike
conventional IL, OIL enables learning from multiple teachers
with a method for discarding bad maneuvers by using a
reward based online evaluation of the teachers at training time.
Furthermore, our approach allows for a modular architecture
that abstracts perception and control, which allows for more
flexibility when training in diverse environments with different
visual properties and control dynamics. In our experiments, it

Fig. 1: OIL-trained Autonomous Driving (left) and OIL-trained
UAV Racing (right) on test tracks created using Sim4CV [23].

is shown that this approach leads to greater robustness and
improved performance, as compared to various state-of-the-
art IL and RL methods. Moreover, OIL allows for control
networks to be trained in a fully automatic fashion requiring
no human annotation but rather can be trained using automated
agents. We demonstrate that our approach outperforms other
state-of-the-art end-to-end network architectures and purely IL
and RL based approaches.

We apply OIL to both autonomous driving and UAV racing
in order to demonstrate the diverse scenarios in which it can
be applied to solve sequential prediction problems. We follow
recent work [6] that tests Al systems through the use of com-
puter games. We use Sim4CV based on the Unreal Engine 4
(UE4), which has both a residential driving environment with a
physics based car and gated racing tracks for UAV racing [23].
The simulator is multi-purpose, as it enables the generation
of synthetic image data, reinforcement based training in real-
time, and evaluation on unseen tracks. We demonstrate that
using OIL enables to train a modular neural network predicting
controls for autonomous driving and the more complex task of
UAV racing in the simulated Sim4CV environment. Through
extensive experiments, we show that OIL outperforms its
teachers, conventional IL and RL approaches and even humans
in simulation.

Contributions. (1) We propose Observational Imitation Learn-
ing (OIL) as a new approach for training a stationary deter-
ministic policy that overcomes shortcomings of conventional
imitation learning by incorporating reinforcement learning
ideas. It learns from an ensemble of imperfect teachers, but
only updates the policy with the best maneuvers of each
teacher, eventually outperforming all of them. (2) We use a
flexible network architecture which adapts well to different
perception and control scenarios. We show that it is suitable
for solving complex navigation tasks (e.g. autonomous driving
and UAV racing). (3) To the best of our knowledge, this paper
is the first to apply imitation learning to multiple teachers
while being robust to teachers that exhibit bad behavior.

Convl
20@5x5

Conv2
24@5x5

Conva
28@4)(4 30@4)(4

Control Loss o
£~

fc5@32
fc4@64 fc6@16

Intermediate Representation Layer Output Layer

32@3x3

Perceptioﬁ Network

.
Control Network

Fig. 2: Pipeline of our modular network for autonomous navigation. The perception network ¢ takes the raw image as input
and predicts waypoints. The control network ¢ takes waypoints and vehicle state as input and outputs an appropriate control
signal, e.g. throttle (T), aileron (A), elevator (E), and rudder (R) for the UAV and only gas (E) and steering (R) for the car.

II. RELATED WORK

The task of training an actor (e.g. ground vehicle, human, or
UAV) to physically navigate through an unknown environment
has traditionally been approached either through supervised
learning (SL) and in particular imitation learning (IL), rein-
forcement learning (RL), or a combination of the two. A key
challenge is learning a high dimensional representation of raw
sensory input within a complex 3D environment. Similar to our
approach, many recent works such as [8, 30, 31, 39, 15, 2] use
modern game engines or realistic physics-based simulators to
evaluate complex navigation tasks.

Imitation Learning (IL). In physics based navigation, IL
can be advantageous when high dimensional feedback can
be recorded. It has been applied to both autonomous driving
[3, 5, 40, 47, 27] and UAV navigation [40, 13, 22, 2, 41].
In particular, DAGGER [34] and its variants [2] [27] have
been widely used for many robotic control tasks. However,
limitations such as requirements of significant fine-tuning,
inability to predict human-like controls, data augmentation
being only corrective and the requirement for near-optimal
expert data makes DAGGER hard to scale up to more complex
problems. Moreover, the flaws and mistakes of the teachers
are learned along with differing responses. See Section V-B
for the comparison of two popular IL methods (Behavioral
Cloning [45] and DAGGER) to OIL. Follow-up work such
as AGGREVATE [33] and Deeply AggreVaTeD [42] attempt
to mitigate these problems by introducing exploratory actions
and measuring actual induced cost instead of optimizing for
expert imitation only. They also claim exponentially higher
sample efficiency than many classic RL methods. A number
of improvements in other respects have been published, such
as SafeDAgger [48] that aims to make DAGGER more (policy)
query-efficient and LOLS [4] that aims to improve upon cases
where the reference policy is sub-optimal.

Reinforcement Learning (RL). RL provides an alternative
to IL by using rewards and many iterations of exploration to
help discover the proper response through interactive trial and
error. Recent work on autonomous driving has employed RL
[21, 19, 14, 36, 35, 12, 7]. RL networks may not be able to
discover the optimal outputs in higher-order control tasks. For
example, Dosovitskiy et al. [7] find RL to under-perform in
vehicle navigation due to the extensive hyperparameter space.

RL methods can be divided into three classes: value-based,
policy-based, and actor-critic based methods [43]. In particu-
lar, actor-critic based methods, e.g. A3C [21] and DDPG [19],
are notably the most popular algorithms in the RL community.
However, achieving strong results with RL is difficult, since
it is very sensitive to the reward function, it can be sample
inefficient, and it requires extensive training time due to the
large policy space (see Section V-B for comparison of DDPG
to OIL). Methods such as TRPO [38] have been developed
to provide monotonic policy improvements in most cases, but
still require extensive training time.

Combined Approaches. Several methods exist that combine
the advantages of IL and RL. Most of them focus on tackling
the problem of low RL sample efficiency by providing suitable
expert demonstrations ([18, 49, 44, 29, 9, 17]) and guided
policy search ([16, 6, 10, 49]). Others focus on risk awareness
as real-world deployment failures can be costly [1]. Generative
adversarial imitation learning [11] avoids the costly expense
of IRL by directly learning a policy from supplied data. It
explores randomly to determine which actions bring a policy
closer to an expert but never directly interacts with the expert
as in DAGGER. The authors note a combination of both ran-
dom search and interaction with the expert would lead to better
performance, an insight employed in our approach. Similar
to our approach, [10] apply Bayesian Model Combination to
guide the policy to learn the best combination of multiple
experts. The recent CFN [25] algorithm is the most related
method to our approach; trajectories of multiple controllers
are filtered and then fused by a neural network in order to
obtain a more robust controller.

We draw inspiration for OIL from these hybrid approaches.
In contrast to pure IL, OIL can prevent itself from learning bad
demonstrations from imperfect teachers by observing teachers’
behaviours and estimating the advantage or disadvantage to
imitate them. Unlike pure RL, it converges to a high perfor-
mance policy without too much exploration since it is guided
by the best teacher behaviors. While sharing the advantage
of higher sample efficiency with other hybrid approaches, our
method has the specific advantage of inherently dealing well
with bad demonstrations, which is a common occurrence in
real-world applications.

III. METHODOLOGY

After providing a brief review of related learning strategies
for sequential decision making (i.e. Markov Decision Process,
Imitation Learning, and Reinforcement Learning), we intro-
duce our proposed Observational Imitation Learning (OIL),
which enables automatic selection of the best teacher (among
multiple teachers) at each time step of online learning.

A. Markov Decision Process

OIL is a method that enables a learner to learn from multiple
sub-optimal or imperfect teachers and eventually to outperform
all of them. To achieve this goal, training needs to be done
by repeatedly interacting with an environment £. We consider
the problem as a Markov Decision Process (MDP) consisting
of an agent and environment. At every time step n, the agent
observes a state s, or a partial observation o,, of state s,. In
our setting, we assume the environment is partially-observed
but we use s,, to represent the state or the partial observation
for simplicity. Given s,, the agent performs an action a,
within the available action space A based on its current policy
m, where 6 represents the parameters of the policy. Then, the
environment £ provides the agent a scalar reward r,, according
to a reward function R(s,,a,) and transfers to a new state
Sn+1 Within the state space S under the environment transition
distribution p(s,,+1|$n, a,). After receiving an initial state s,
the agent generates a trajectory 7 = (81, a1, S2,02, ..., SN)
after V time steps. The trajectory can end after a certain
number of time steps or after the agent reaches a goal or
terminal state. The objective of solving a MDP problem is to
find an optimal policy 7* from policy space II that maximizes
the expected sum of discounted future rewards, R,, at time n.
It is commonly referred to as the value function:

VT(s)=E [Rn|sn = S,?T]

N
-F Z ,yn’—nrn/

n’'=n

(1

Sp=8,T|,

where v € [0,1] is a discounted factor that trades off the
importance of immediate and future rewards, and N is the
time step when the trajectory 7 terminates. The optimal policy
7* maximizes the value function for all s € S:

7" = argmax V7 (s))
mell

B. Imitation Learning

Imitation learning (IL) is a supervised learning approach
to solve sequential decision making problems by mimicking
an expert policy 7°. Instead of directly optimizing the value
function, IL minimizes a surrogate loss function L(s, 7, w¢).
Let d, denote the average distribution of visited observations
when an arbitrary policy 7 is executed for 7' time steps.
Behavioral Cloning, one of the simplest IL algorithms, trains
a learner policy network 7! to fit the input (observations)
and output (actions) of the expert policy by minimizing the
surrogate loss [34]:

7l = argmin E,vg . [L(s, 7, 7%)] 3)
mell

However, this leads to poor performance because the encoun-
tered observation spaces of the learner and the expert are
different, thus violating the independent, identically distributed
(i.i.d.) assumption of statistical learning approaches and caus-
ing compounding errors [32]. DAGGER (Dataset Aggregation)
[34] alleviates these errors in an iterative fashion by collecting
the state-action pairs visited by the learned policy, but labeled
by the expert. Its goal is to find a policy 7 that minimizes the
surrogate loss under the observation distribution d, induced
by the current policy 7:

7! = argmin Esnd, [L(s, 7, 7€)] “)

mell
A major drawback of DAGGER is that it highly depends on
the expert’s performance, while a near-optimal expert is hard
to acquire for most tasks.

C. Reinforcement Learning

Reinforcement Learning (RL) is another category of meth-
ods to solve the MDP problem by trial and error. RL methods
can be divided into three classes: value-based, policy-based,
and actor-critic-based methods [43]. Specifically, actor-critic-
based methods, e.g. A3C [21] and DDPG [19], are currently
the most popular algorithms in the RL community. The most
related actor-critic method to our work is the Advantage Actor-
critic approach [21], which uses an advantage function for
policy updates instead of the typical value function or Q-
function [20]. Intuitively, this advantage function evaluates
how much improvement is obtained if action a is taken at state
s as compared to the expected value. It is formally defined as
follows [28]:

A" (s,a) = Q™ (s,a) — V7 (s) (5)

D. Observational Imitation Learning (OIL)

As discussed in Section III-B, imitation learning requires
a near-optimal teacher and extensive augmentation for ex-
ploration. Getting labeled expert data is expensive and not
scalable. While RL approaches (Section III-C) do not require
supervision and can freely explore an environment, they are
time-consuming and may never learn a good policy unless
the reward is very well designed. In an effort to combine
the strengths of both approaches we propose Observational
Imitation Learning (OIL). Inspired by advantage actor-critic
learning [21], we learn to imitate only the best behaviours
of several sub-optimal teachers. We do so by estimating the
value function of each teacher and only keeping the best to
imitate. As a result, we can learn a policy that outperforms
each of its teachers. Learning from multiple teachers also
allows for exploration, but only of feasible states, leading to
faster learning than in RL.

Since we do not require expert teachers we can obtain
labeled data much more cheaply. We assume easy access
to K cheap sub-optimal teacher policies (e.g. simple PID
controllers). We denote the teacher policy set as IIf =
{mtr wt2 . wtx}, where w'* is the teacher policy corre-

sponding to teacher k and denote the learner policy as 7.

The advantage function of current learner policy 7' compared
to teacher policy 7? at state s can be written as:

A(s, 7l)y = V™ (s) — V™ (s) (6)

The advantage function A(s, 7!, 7t) determines the advan-
tage of taking the learner policy 7! at state s compared to the
teacher policy 7! where 7! and 7! are analogous to an actor
and critic policy respectively. Note that the advantage function
in regular RL settings is used to cope with the learner policy.
In contrast, our advantage function Equation 6 considers both
the learner policy and the teacher policy. In multi-teacher
scenarios, we select the most critical teacher 7+ as the critic
policy (refer to Algorithm 1).

We define our training in terms of observation rounds, each
consisting of three phases: observing, rehearsing, acting.

Observe. We estimate the value functions V™ () of the learner
policy as well as of all teacher policies using Monte-Carlo
sampling (rolling out the trajectory of each policy to get
the returns R;). We select the most critical teacher policy

mts = argmax V”t(s) as the critic. Then we compute
wtellt

the advantage function A(si,n!,7'*) between the learner

policy and the most critical teacher policy. If the advantage

A(3177rl,7rt*) < 0 (i.e. there exists a sub-optimal teacher

policy with a higher advantage than the current learner policy),

we enter the rehearsing phase. Otherwise, we go to the acting

phase directly.

Rehearse. After computing A(sy, 7!, 7!*), we can optimize
the policy by actor-critic methods or by optimizing the sur-
rogate loss. In order to benefit from the fast convergence of
IL instead of optimizing the advantage function directly, we
optimize the surrogate loss in Equation 7 iteratively as follows:

LG+ argmin Egg [L(S,Wl(i)aﬂt*)] 7

mell wH(®)
where 7/(9) is the learner policy at the i-th iteration. In our
implementation, we use a DNN to represent our learner policy
as 7'(s|@), where 6 represents the parameters of the neural
network. In order to minimize the surrogate loss, we roll out
the learner (actor) policy and use the selected teacher (critic) to
correct the learner’s actions. In other words, we minimize the
surrogate loss with states encountered by the learner policy
and actions labeled by the most critical teacher policy. We
minimize the surrogate loss by performing gradient descent
with respect to 6 on collected data D and update the learner
policy until A(sy,n!, %) > ¢ or I episodes. In practice, the
advantage function A can be estimated using Monte Carlo
Methods or Bootstrapping Methods. In our experiment, we
use Monte Carlo Methods to estimate the advantage function
by rolling out policies (see Section V-A).
Act. After rehearsing, the learner policy will perform well
from the initial state s;; we roll out the current policy 7! to
the new state s} by acting J steps.

IV. NETWORK AND TRAINING DETAILS

In this section we present a modular network architecture
based on CFN [25] for autonomous driving and UAV racing

Algorithm 1: Observational Imitation Learning (OIL).

Initialize Learner training database D < 0;
Initialize Learner network 7'(s|0) with random weights 6;
for observation round m <— 1 to M do
Receive initial state s; from the environment;
Estimate learner value function V™' (1) 3
Estimate teacher value functions V™' (s1), Vot e TIY
Choose 7'* = argmax v (s1);
mtellt
Compute advantage function A(s1, 7', w'*);
while A(sy, 7!, 7t*) < 0 do
repeat
Sample N-step trajectories using learner policy;
while n < N do
repeat
an ~ 7 (5,]0);
Take action a,,, observe 7, Sn+1 ;
Add state-action (s, 7" (s5,)) to D;
Update 7'(s]6) by minimizing
L(s,n', 7") from D;
Sn < Sn+1;
until s, is a terminal state;

end
until A(s1, 7!, 7*) > € or repeat I episodes,

end
Sample s; by acting updated 7! policy J steps;
51+ s

end

that solves the navigation task as a high dimensional percep-
tion module (trained with automatically annotated data) and a
low dimensional control module (trained with OIL).

A. Modular Architecture

The fundamental modules of our proposed system are
summarized in Figure 2. We use a modular architecture
[13, 24, 25] to reduce the required training time by introduc-
ing an intermediate representation layer. The overall neural
network consists of two modules: a Perception Network ¢
and a Control Network . The input state includes image
Z and the physical measurements M of the vehicle’s state
(i.e. current orientation and velocity). The action is a control
signal for the car (G: Gas/Brake, S: Steering) or UAV (1"
Throttle, A: Aileron/Roll, E: Elevator/Pitch, R: Rudder/Yaw).
One scalar value is regressed for each control signal. The
perception network is parameterized by 6, and the control
network is parameterized by 6.. The control network takes
the intermediate representation predictions of the perception
network and vehicle’s state as input and outputs the final
control predictions. In our experiments, we choose waypoints
as the intermediate representation. Note that it can also be
segmentation maps [24], depth images, affordances [5] [37]
or the combination of them. The overall navigation policy can
be described as follows:

' (s10) = 7'(s0p,) = @(d(sz/0p), slbc) (8)

The overall loss is defined in Equation 9 as a weighted
sum of perception and control loss. The perception loss

relates to the intermediate layer by minimizing the difference
between the ground truth intermediate representation z* and
predicted intermediate representation ¢(sz|6,). The control
loss in Equation 10 comes from applying OIL to learn from
multiple imperfect teachers (automated PID controllers in our
case) by minimizing the surrogate loss in Equation 7, where

s~d and a* ~ i,

L =L.(n(s|0),a") +AL,(é(sz|0p), 2") 9)

control loss

perception loss
Le(m(s]6),a) = Le(p(@(sz16p), saml0c), a™)

In general, this optimization problem can be solved by
minimizing the overall loss with respect to 6, and 6, at the
same time. The gradients are as follows:

(10)

ai_%+ %_aﬂ‘caﬁ% %% (11)
a6, 06, 06, 0o 0608, ~ 9¢ 06,

L OL, dp

0. 0y 00, (12)

A good perception network is essential to achieve good
controls. To maintain modularity and reduce training time, we
first optimize only for ¢, and ignore the control loss. As the
perception network converges, we fix ¢, and optimize for 0..

This modular approach has several advantages over an end-
to-end approach (see also [13, 24, 25]). Since only the control
module is specific to the vehicle’s dynamics, the perception
module can simply be swapped out, allowing the vehicle to
navigate in completely different environments without any
modification to the control module. Similarly, if the reward
function is changed in different tasks, we can simply retrain
the control module to learn a different policy. Naturally, one
can add links between the perception and control networks and
then finetune the joint network in an end-to-end fashion. It is
also possible to connect the two networks and use the waypoint
labels as intermediate supervision for the perception part while
training the joint model end-to-end. While these variants are
interesting, we specifically refrain from such connections to
safeguard the attractive modular properties.

In what follows, we provide details of the architecture,
implementation, and training procedure for both the perception
and control modules. Note that OIL and the proposed archi-
tecture can also be applied to other types of MDP problems
(e.g. other vision-based sequential decision making problems).

B. Perception

In our case the perception module takes raw RGB images
as an input and predicts a trajectory of waypoints relative to
the vehicle’s current position, which remains unknown in 3D.
The waypoints predicted by the perception module are input
into the control network along with the current vehicle state
(velocity and orientation).

Drawbacks of Predicting Controls Directly. Note that
related work commonly proposed to frame the navigation task
as an end-to-end learning problem, predicting controls directly
from single images. However, this has several limitations:

(i) A teacher is required for data collection and the controls
are strongly dependent on the teacher and vehicle dynamics,
as opposed to our modular DNN. (ii) There is no unique
mapping from images to controls, since different sequences of
controls can lead to the same image. This can result in direct
discrepancies and less stable training, if data from multiple
teachers is used. (iii) When using camera views in addition to
the views used for data acquisition (a common augmentation
method to increase robustness), it is unclear how the controls
corresponding to these augmented views should be adjusted,
given the underlying complex nature of the task. For the case
of driving, it might be sufficient to only predict a steering
angle and acceleration. Since the car is confined to a 2D plane
(road) and the friction of the tires limits drift, one can design
a highly simplified model, e.g. by offsetting the steering by
the rotation of the augmented camera view. However, for more
complex scenarios where the vehicle moves in 3D and is less
constrained by friction, such simplifying assumptions quickly
become invalid.

Waypoint Encoding. The mapping from image to waypoints
is deterministic and unique. For every camera view, the
corresponding waypoints can easily be determined and are
independent of the vehicle state. We define waypoints along
the track as a vertical offset that is measured as the distance
between the vehicle position and the projected point along the
viewing axis, and a horizontal offset that is defined as the
distance between the original and projected point along the
viewing axis normal. We then encode these waypoints relative
to the vehicle position and orientation by projecting them onto
the viewing axis. Predicting waypoints rather than controls
does not only facilitate network training, but it also allows
for the automatic collection of training data without human
intervention. Within the simulator, we simply sample/render
the entire training track from multiple views and calculate the
corresponding waypoints along the track. Note that it is still
possible to use recordings from teachers, as one can use future
positions to determine the waypoint for the current frame
similar to [46]. Please refer to Figure 3 for a visualization
of the encoding method.

y-offset
x-offset
— viewing direction

L (3
20,

Fig. 3: Illustration of waypoint encoding.

Network Architecture. We choose a regression network
architecture similar to the one used by Bojarski et al. [3].
Our DNN architecture is shown in Figure 2 as the percep-
tion module. It consists of eight layers: five convolutional

with {20, 24, 28, 30, 32} filters and three fully-connected with
{1800, 800,100} hidden units. The DNN takes in a single
RGB-image with 180 x 320 pixel resolution and is trained
to regress the next five waypoints (z-offset and y-offset with
respect to the local position of the vehicle) using a standard ¢5-
loss and dropout ratio of 0.5 in the fully-connected layers. As
compared to related methods [3, 40], we find that the relatively
high input resolution is useful to improve the network’s ability
to look further ahead, and increasing long-term trajectory
stability. For more details and a visualization of the learned
perception network, please refer to the supplement.

C. OIL for Control

Here, we present details of the network architecture and
learning strategy to train the control network using OIL.

Teachers and Learner. In our experiments, we use multiple
naive PID controllers as teachers for our control policy. The
PID parameters are tuned within a few minutes and validated
on a training track to perform well. As the system is very
robust to learn from imperfect teachers, we do not need to
spend much effort tuning these parameters or achieve optimal
performance of the teachers on all training tracks. Although
an unlimited number of PID based teachers can be created, we
empirically find five to be sufficient for the two control sce-
narios (autonomous driving and UAV racing). We refer to our
evaluation section to see the effect of the number of teachers
on learning. The five PID teachers have different properties.
Some of them are fast at straightaways but are prone to crash
in tight turns. Others drive or fly more conservatively and are
precise at curves but slow at straightaways as a result. OIL
enables the agent to learn from such imperfect teachers by
selecting only the best maneuvers among them to learn.

We use a three-layer fully connected network to approx-
imate the control policy ¢ of the learner. The MDP state
of the learner is a vector concatenation of the predicted
intermediate representation (e.g. waypoints) £ = ¢(sz|0,) and
the vehicle state (physical measurements of the vehicle’s speed
and orientation) S4.

Network Architecture. The goal of the control network is
to find a control policy ¢ that minimizes the control loss L.:

e =argmin L.(o(2, spm]0.),a™) (13)

7]
It consists of three fully-connected layers with hidden units
{64,32,16}, where we apply dropout in the second layer
with a ratio of 0.5 for regularization. The loss function L.
is a standard ¢2-loss optimized by the Adam optimizer with a
learning rate of 10~*. The control network is updated by OIL
in an online fashion, while the vehicle runs through a set of
training tracks.

As such, the control network is learning from experiences
(akin to reinforcement learning), but it is supervised through-
out by multiple teachers to minimize the surrogate loss. An
advantage of our approach is that multiple teachers are able
to teach throughout the control network’s exploration. The
control network never becomes dependent on the teachers,

but gradually becomes independent and eventually learns to
outperform them.

V. EXPERIMENTS
A. Experimental Setup

The Sim4CV [23] (see Figure 1) environment provides
capabilities to generate labeled datasets for offline training
(e.g. imitation learning), and interact with the simulation
environment for online learning (e.g. OIL or reinforcement
learning) as well as online evaluation. For each application, we
design six environments for training and four for testing. For
fair comparison, human drivers/pilots are given as much time
as needed to practice on the training tracks, before attempting
the test tracks. Please refer to Figure 4 and Figure 5 for
the test environments and to the supplement for the training
environments.

For the autonomous driving scenario, the PID teachers,
learned baselines and human drivers have to complete one
lap. They are scored based on the average error to the center
line and the time needed to complete the course. In addition,
they need to pass through invisible checkpoints placed every
50 meters to make sure they stay on the course and do not
take any shortcuts. The vehicle is reset at the next checkpoint
if it did not reach it within 15 seconds.

For the UAV racing task, all pilots have to complete two
laps on the test tracks and are scored based on the percentage
of gates they maneuver through and the overall time. Similar to
the autonomous driving scenario we reset the UAV at the next
checkpoint if it was not reached within 10 seconds. Here, the
checkpoints correspond to the racing gates. Visualizations of
the vehicle trajectory for all models on each track are provided
in the supplement.

Training Details. For fair comparison we train each network
until convergence or for at most 800k steps. We estimate the
value functions for all the teachers and the learner to select
the most critical teacher with N step rollouts (N = 300 for
the car, N = 200 for the UAV) during the observing phase.
During the rehearsing phase, we execute the learner policy
for N steps until the advantage function A(sy, !, 7t*) > € or
I = 50 episodes are reached. We choose € = —0.1V™" for
the multi teacher experiments, and e = 0 for the single teacher
experiments. We choose J = 60 as the acting step size.

Reward Function of OIL. The reward function of OIL is
used to compute the value functions and advantage functions
of learner and teachers. For OIL, we use reward functions that
score the whole trajectory. Assuming a trajectory of length IV,
let 7 = (s1, a1, S2,as, ..., sn) denote the generated trajectory
and S,q denote all the terminal states when the vehicles leave
the course/track or hit an obstacle.

For autonomous driving, preciseness in lane keeping is
an important measurement that reflects the smoothness and
safety of the algorithm. Hence, we use a reward function that
considers both speed and trajectory error as follows:

+ SN ¢ Send
R(r) = {azng ent

(14)
aX N entl + Tpenalty SN € Send

)

2 D

Fig. 4: Tracks used to evaluate the flying policy.

Fig. 5: Maps used to evaluate the driving policy.

where (is the trajectory length of the vehicle along the center
of the lane and e, is the distance error to the center of the
lane at state s,. We choose a@ = 0.5 and a large negative
reward 7penay = — 15000 for violations (e.g. crossing the lane
boundaries).

For UAV racing, it is not necessary to stay in the center of
the track. Hence, we use the following reward function that
considers forward speed vy and terminal state Senq:

R(T) _ {Zgzl Vfn

N
Zn:l V¢, + Tpenalty

SN & Send

15
SN € Send (1>

where vy, is the forward speed of the vehicle after executing
ap at state s, and Tpenaiy 18 a large negative reward. We choose
the penalty to be —15000.

Reward function of DDPG. In our experiments, DDPG
cannot converge using the same simple reward function as
OIL. Therefore, we design a more complex reward function
to induce a dense normalized reward as follows.

€n—€n41l 1 Vfn
r — €norm + ent1t1 +ﬁvnorm
SnsQn

Sn+41 ¢ Send

(16)
Sn+1 S Send

Tpenalty

where e,, and e,y; are the distance errors to the center of
the track/lane at state s,, and state s,1 respectively, €norm
is a distance error normalization factor, vy, is the forward
speed the vehicle, vyom 1S @ velocity normalization factor and
Tpenalty 1S @ negative reward for when the vehicles reaches a
terminal state. Furthermore, we find it is hard to learn both
acceleration and steering controls for the car. Therefore, we
fix the acceleration value to £ = 0.5 and choose 8 = 0 to
only score the agent by the distance error. For the UAV, we
choose 5 = 1 to score the agent by both the velocity and
distance error and choose vporm = 800. We set enorm = 15 and
Tpenalty = —0.2 for both the UAV and the car.

Controller Architecture of Learned Baselines. For fair
comparisons, we use the same control policy network with
hidden units {64, 32,16} for all the learned baselines. As for
the critic network of DDPG, we use the same number of
hidden units and use an output layer with a one-dimensional
output to predict the Q value.

B. Results

Comparison to State-of-the-Art Baselines. We compare
OIL for both autonomous driving and UAV racing to several
DNN baselines. These include both IL approaches (Behaviour
Cloning, DAGGER) and RL approaches (DDPG). For each
comparison we implement both learning from the single best
teacher and an ensemble of teachers. This essentially allows
a broad baseline comparison of 6 different state-of-the-art
learning approaches evaluating various IL and RL approaches.
In Table I, the learned approaches are compared to OIL. Our
results demonstrate that OIL outperforms all learned baselines
in both accuracy scores and timings. Behaviour Cloning and
DAGGER both perform worse in terms of score and timings as
the number of teachers increases. This is because they do not
distinguish between good and bad behaviour and learn from
both. Moreover, they are limited by their teachers and unable
to outperform them. This can be seen in single teacher training,
where they do not achieve scores better than their teacher.
In contrast, OIL improves upon scores both with a single
teacher and multiple teachers. In comparison to DDPG, OIL
converges quickly without extensive hyperparameter search
and still learns to fly/drive much more precisely and faster.

Comparison to Teachers and Human Performance. We
compare our OIL trained control network to the teachers it
learned from and human performance. The perception network
is kept the same for all learned models. The summary of this
comparison to OIL is given in Table I. Our results demonstrate

Results for the UAV Results for the car

Teachers: PID controllers Teachers: PID controllers

Teacher #1 100% 131.9 Teacher #1 24.1 151.4
Teacher #2 76.4% 87.0 Teacher #2 539.6 110.0
Teacher #3 97.2% 87.6 Teacher #3 19.5 84.5
Teacher #4 80.6% 90.3 Teacher #4 76.7 76.7
Teacher #5 69.4% 99.7 Teacher #5 568.4 102.2
Baseline: Human Baseline: Human
Novice 972% 124.6 Novice 85.3 100.7
Intermediate 100% 81.2 Intermediate 80.6 88.3
Expert 100% 46.9 Expert 49.0 70.4
Learned Policy: Best Teacher (1) Learned Policy: Best Teacher (3)
Behaviour Cl. | 94.4% 139.6 Behaviour Cl. 13.9 88.6
DAGGER 100% 134.1 DAGGER 38.6 88.3
DDPG 95.8% 84.6 DDPG 57.4 139.6
OIL (single) 100% 133.9 OIL (single) 12.4 88.5
Learned Policy: All Teachers Learned Policy: All Teachers
Behaviour Cl. | 72.2% 101.6 Behaviour Cl. | 388.6 112.7
DAGGER 58.3% 140.1 DAGGER 25.9 87.8
DDPG 95.8% 84.6 DDPG 57.4 139.6
OIL (multi) 100 % 81.3 OIL (multi) 17.6 74.2

TABLE I: Left: Results for the UAV. Columns show the
number of gates passed and time to complete two laps. Right:
Results for the car. Columns show average error to center
of the road and time to complete one round. All results
are averaged over all 4 test tracks/maps. Please refer to the
supplement for detailed results per track/map.

Ablation study for the car

OIL (Teachers #1-5, 60 steps) 153 80.5
OIL (Teachers #1-5, 180 steps) 16.0 80.7
OIL (Teachers #1-5, 300 steps) 176 742
OIL (Teachers #1-5, 600 steps) 13.8 822
OIL (Teachers #1,3,4, 300 steps) | 25.8 73.6

TABLE 1II: Ablation study for the car. Left column: average
error to center of the road. Right column: time to complete one
round. All results are averaged over all 4 test tracks/maps.
Please refer to the supplement for the detailed results per
track/map.

that OIL outperforms all teachers and novice to intermediate
human pilots/drivers.

Teacher #1 has the least error of all teachers and is the
only one to perfectly complete all gates in the UAV racing
evaluation. However, OIL not only completes all gates but is
also much faster when learning from multiple teachers. In the
autonomous driving evaluation, it is more precise in centering
along the middle of the road and also much faster when
learning from multiple teachers. In comparison to humans,
OIL is better than novice and intermediate levels but slower
than an expert in both applications. A notable difference
between the expert driver and OIL is that OIL has a much
lower error in driving. It is able to maintain high speeds while
staying most accurately in the center of the tracks. Compared
to the expert driver, OIL is 3.83 seconds slower but only has
35.91% of the error in terms of the distance to the center.

Ablation Study. We investigate the importance of trajectory
length and the number of teachers, and report results in Table
II. Our experiments show that OIL is robust to different trajec-
tory lengths and varying numbers of teachers. One observation
is that different trajectory length balances the average error
and speed. In our car experiment, when we set trajectory
length to 300 steps and use five teachers, OIL learns a fast
and precise (compared to human experts and teachers) driving
policy. Moreover, it is observed that increasing the number
of teachers reduces the average error and makes the learned
policy more stable. When OIL only learns from three teachers,
the time to complete one round reduces slightly but the average
error increases significantly compared to learning from five
teachers.

VI. CONCLUSION

In this paper, we present Observational Imitation Learning
(OIL), a new approach for training a stationary deterministic
policy that is not bound by imperfect or inexperienced teachers
since its policy is updated by selecting only the best maneuvers
at different states. OIL can be regarded as a generalization of
DAGGER for multiple imperfect teachers.

We demonstrate the ability of OIL by training a control
network to autonomously drive a car and to fly an unmanned
aerial vehicle (UAV) through challenging race tracks. Exten-
sive experiments demonstrate that OIL outperforms single and
multiple-teacher learned IL methods (Behavior Cloning, DAG-
GER), RL approaches (DDPQG), its teachers and experienced
humans pilots/drivers.

While our method works well in the navigation tasks with
access to non-expert controllers, a question arises concerning
how this method would scale to more complex tasks where
controller design is very time-consuming or intractable, e.g.
Atari games. OIL is general in nature and only requires access
to teachers and a function to score them; one approach to avoid
hand-designed controllers would be to use learned ones instead
(e.g. trained using different RL algorithms) and use the reward
of the environment as a score for OIL.

VII. FUTURE WORK

OIL provides a new learning-based approach that can re-
place traditional control methods especially in robotics and
control systems. We expect OIL to expand its reach to other
areas of autonomous navigation (e.g. obstacle avoidance) and
benefit other robotic tasks (e.g. visual grasping or placing).

One very interesting avenue for future work is to apply
OIL outside simulation. Although Sim4CV uses a high fidelity
game engine for rendering and physics, the differences be-
tween the simulated world and the real world will need to be
reconciled. Real-world physics, weather and road conditions,
as well as sensor noise will present new challenges for
adapting/training the control network.

ACKNOWLEDGMENTS

This work was supported by the King Abdullah University
of Science and Technology (KAUST) Office of Sponsored Re-
search through the Visual Computing Center (VCC) funding.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

Olov Andersson, Mariusz Wzorek, and Patrick Doherty.
Deep learning quadcopter control via risk-aware active
learning. In Thirty-First AAAI Conference on Artificial
Intelligence (AAAI), 2017, San Francisco, 2017. 2
Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A.
Knepper, and Yoav Artzi. Following high-level naviga-
tion instructions on a simulated quadcopter with imitation
learning. In Robotics: Science and Systems XIV, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 2018. 2
Mariusz ~ Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol
Zieba. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016. 2, 5, 6

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal,
Hal Daumé III, and John Langford. Learning to search
better than your teacher. In /CML, 2015. 2

Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong
Xiao. Deepdriving: Learning affordance for direct per-
ception in autonomous driving. In Proceedings of the
2015 IEEE International Conference on Computer Vision
(ICCV), 2015. 2, 4

Alexey Dosovitskiy and Vladlen Koltun. Learning to act
by predicting the future. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, Conference Track Proceedings, 2017. 1, 2
Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Proceedings of the Ist
Annual Conference on Robot Learning, volume 78 of
Proceedings of Machine Learning Research, pages 1-16.
PMLR, 13-15 Nov 2017. 2

Adrien Gaidon, Qiao Wang, Yohann Cabon, and
Eleonora Vig. Virtual worlds as proxy for multi-object
tracking analysis. In CVPR 2016, pages 43404349,
2016. 2

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine,
and Trevor Darrell. Reinforcement learning from imper-
fect demonstrations. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, Workshop Track Proceedings, 2018. 2
Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Re-
inforcement learning with multiple experts: A bayesian
model combination approach. In Advances in Neural
Information Processing Systems 31, pages 9549-9559.
2018. 2

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In Advances in Neural Information
Processing Systems 29, pages 4565-4573. 2016. 2
David Isele, Reza Rahimi, Akansel Cosgun, Kaushik
Subramanian, and Kikuo Fujimura. Navigating occluded
intersections with autonomous vehicles using deep rein-
forcement learning. In 2018 IEEE International Confer-

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

ence on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018, pages 2034-2039, 2018. 2
Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey
Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza.
Deep drone racing: Learning agile flight in dynamic
environments. In Proceedings of The 2nd Conference on
Robot Learning, volume 87 of Proceedings of Machine
Learning Research, pages 133-145, 2018. 2, 4, 5

Jan Koutnik, Jiirgen Schmidhuber, and Faustino Gomez.
Online Evolution of Deep Convolutional Network for
Vision-Based Reinforcement Learning, pages 260-269.

Springer International Publishing, Cham, 2014. doi:
10.1007/978-3-319-08864-8 25. 2
Adam Lerer, Sam Gross, and Rob Fergus. Learning

physical intuition of block towers by example. In ICML
2016, New York City, NY, pages 430-438, 2016. 2
Sergey Levine and Vladlen Koltun. Guided policy search.
In Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, Atlanta, Georgia, 2013. 2
Yuxiang Li, Ian Kash, and Katja Hofmann. Learning
good policies from suboptimal demonstrations. In /4th
European Workshop on Reinforcement Learning (EWRL
2018), October 2018. 2

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing.
CIRL: controllable imitative reinforcement learning for
vision-based self-driving. In ECCV 2018, 15th European
Conference, Munich, Germany, pages 604—620, 2018. 2
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. ICLR, abs/1509.02971, 2016. 2, 3
Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015. 3
Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, pages
1928-1937, 2016. 2, 3

M. Miiller, V. Casser, N. Smith, D. L. Michels, and
B. Ghanem. Teaching UAVs to Race: End-to-End Re-
gression of Agile Controls in Simulation. In European
Conference on Computer Vision Workshop (ECCVW),
September 2018. 2

Matthias Miiller, Vincent Casser, Jean Lahoud, Neil
Smith, and Bernard Ghanem. Sim4cv: A photo-realistic
simulator for computer vision applications. Int. J. Com-
put. Vision, 126(9):902-919, September 2018. ISSN
0920-5691. doi: 10.1007/s11263-018-1073-7. 1, 6
Matthias Miiller, Alexey Dosovitskiy, Bernard Ghanem,
and Vladlen Koltun. Driving policy transfer via modu-
larity and abstraction. In Proceedings of The 2nd Con-
ference on Robot Learning, volume 87 of Proceedings of

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Machine Learning Research, pages 1-15. PMLR, 29-31
Oct 2018. 4, 5

Matthias Miiller, Guohao Li, Vincent Casser, Neil Smith,
Dominik L. Michels, and Bernard Ghanem. Learning a
controller fusion network by online trajectory filtering
for vision-based uav racing. In CVPR Workshops, June
2019. 2,4, 5

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In /CML, volume 99,
pages 278-287, 1999. 1

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek
Lee, Xinyan Yan, Evangelos Theodorou, and Byron
Boots. Agile autonomous driving using end-to-end deep
imitation learning. In Robotics: Science and Systems X1V,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, June 26-30, 2018, 2018. 2

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Nat-
ural actor-critic. In European Conference on Machine
Learning, pages 280-291. Springer, 2005. 3

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning Complex Dexterous Manipu-
lation with Deep Reinforcement Learning and Demon-
strations. In Robotics: Science and Systems (RSS), 2018.
2

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and
Vladlen Koltun. Playing for data: Ground truth from
computer games. In ECCV, 2016. 2

German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio Lopez. The SYNTHIA Dataset:
A large collection of synthetic images for semantic
segmentation of urban scenes. In CVPR, 2016. 2
Stephane Ross and Drew Bagnell. Efficient reductions
for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and
statistics, pages 661-668, 2010. 3

Stephane Ross and J Andrew Bagnell. Reinforcement
and imitation learning via interactive no-regret learning.
arXiv preprint arXiv:1406.5979, 2014. 2

Stephane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. No-regret reductions for imitation learning and
structured prediction. CoRR, abs/1011.0686, 2010. 2, 3
Ahmad El Sallab, Mohammed Abdou, Etienne Perot,
and Senthil Yogamani. End-to-end deep reinforcement
learning for lane keeping assist. CoRR, abs/1612.04340,
2016. 2

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot,
and Senthil Yogamani. Deep reinforcement learning
framework for autonomous driving. Electronic Imag-
ing, 2017(19):70-76, 2017. ISSN 2470-1173. doi:
doi:10.2352/ISSN.2470-1173.2017.19.AVM-023. 2
Axel Sauer, Nikolay Savinov, and Andreas Geiger. Con-
ditional affordance learning for driving in urban environ-
ments. In Annual Conference on Robot Learning, CoRL
2018, Ziirich, Switzerland, pages 237-252, 2018. 4

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In ICML, pages 1889-1897, 2015. 2

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical sim-
ulation for autonomous vehicles. In Field and Service
Robotics, Results of the 11th International Conference,
FSR 2017, Zurich, Switzerland, 12-15 September 2017,
pages 621-635, 2017. 2

Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith,
and Stan Birchfield. Toward low-flying autonomous
MAV trail navigation using deep neural networks for
environmental awareness. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
IROS 2017, Vancouver, BC, Canada, September 24-28,
2017, pages 4241-4247, 2017. 2, 6

Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo
Montijano, Davide Scaramuzza, and Mac Schwager. A
real-time game theoretic planner for autonomous two-
player drone racing. In Robotics: Science and Systems
X1V, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, USA, June 26-30, 2018, 2018. doi: 10.15607/RSS.
2018.X1IV.040. 2

Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron
Boots, and J. Andrew Bagnell. Deeply aggrevated: Dif-
ferentiable imitation learning for sequential prediction.
In ICML 2017, Sydney, NSW, Australia, 2017. 2
Richard S Sutton and Andrew G Barto. Introduction
to reinforcement learning, volume 135. MIT press
Cambridge, 1998. 2, 3

Matthew E. Taylor, Halit Bener Suay, and Sonia Cher-
nova. Integrating reinforcement learning with human
demonstrations of varying ability. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS’11, Richland, SC, 2011. 2
Faraz Torabi, Garrett Warnell, and Peter Stone. Be-
havioral cloning from observation. In Proceedings of
the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden., pages 4950—4957, 2018. 2

Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell.
End-to-end learning of driving models from large-scale
video datasets. CoRR, abs/1612.01079, 2016. 5

Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell.
End-to-end learning of driving models from large-scale
video datasets. In CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 3530-3538, 2017. 2

Jiakai Zhang and Kyunghyun Cho. Query-efficient imi-
tation learning for end-to-end autonomous driving. arXiv
preprint arXiv:1605.06450, 2016. 2

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei A. Rusu,
Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, Jnos
Kramr, Raia Hadsell, Nando de Freitas, and Nicolas
Heess. Reinforcement and imitation learning for diverse
visuomotor skills. In Robotics: Science and Systems,
2018. 2

