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Abstract—Detecting and tracking people and groups
of people is a key skill for robots in populated envi-
ronments. In this paper, we address the problem of
detecting and learning socio-spatial relations between
individuals and to track their group formations. Op-
posed to related work, we track and reason about
multiple social grouping hypotheses in a recursive way,
assume a mobile sensor that perceives the scene from
a first-person perspective, and achieve good tracking
performance in real-time using only 2D range data. The
method, that relies on an extended multi-hypothesis
tracking approach, also improves person-level tracking
in two ways: the social grouping information is fed
back to predict human motion over learned intra-group
constraints and to support data association by adapting
track-specific occlusion probabilities. Both measures
lead to an improved occlusion handling and a bet-
ter trade-off between false negative and false positive
tracks. In experiments with a mobile robot and on
large-scale outdoor data sets, we demonstrate how
the approach is able to model social grouping and to
improve person tracking by a significant reduction of
track identifier switches and false negative tracks.

I. INTRODUCTION

As robots enter domains in which they interact and
cooperate closely with humans, people tracking becomes
a key technology for many research and application areas
in robotics, intelligent vehicles and interactive systems. A
difficult problem is maintaining the identity of persons in
crowded scenarios. Such scenarios are highly important
since people typically form groups as investigated in em-
pirical experiments where it was found that up to 70% of
pedestrians walk in groups [I3]. The problem of detecting,
analyzing and tracking groups of people, particularly from
mobile platforms, is relevant for a number of scenarios
including multi-party human-robot interaction and collab-
oration, efficient and socially compliant robot navigation
among people, analysis of social group activities, and
understanding of social situations.

We first state the problem as an estimation problem
of social relations between individuals from perceived
track motion features using SVM classifiers and Bayesian
smoothing. Since the spatial organization of groups is
typically not random and remains largely stable over time,
we also learn group-specific geometric relations between
individuals. Opposed to prior works in which relations and
social groupings are only detected on a per-frame basis
or found in an a posteriori fashion by batch methods, we

Fig. 1. A situation in the city center experiment with 23 tracks in
6 groups (shown in the same color) and several individuals (grey).
Cylinders and dots denote position and trajectories of tracked per-
sons, the numbers on top of the cylinders show social relation prob-
abilities. Grey individuals that appear close to groups are correctly
recognized to not belong to the groups as their motion properties,
shown by the traces, are different. The bottom-right picture is a
visualization of the scene, no image data have been used.

explicitly model and track group formations over time in
a online, recursive multi-hypothesis model selection and
data association framework. The recursiveness implies an
anytime property where the tracker always provides a
current best (but suboptimal) estimate that is refined
with more incoming information. Using multi-hypothesis
tracking, this happens by backtracking to branches in
the hypothesis tree that become more probable with the
new evidence. In contrast to batch methods, this property
is crucial for mobile robots that need to take real-time
decisions for interaction or navigation in unfolding social
situations. The proposed approach, evaluated on 2D range
data, results in accurate and fast social grouping estimates
and outperforms several multi-hypothesis tracker variants.

The paper is organized as follows: after the discussion
of related work in the next section, we present the method
for detecting and learning socio-spatial relations in[Sec. IT1|
[Sec. TV]describes how social grouping models are generated
and in we present the multi-hypothesis tracking
approach. explains how person-level tracking is
improved using the social grouping information, followed
by that gives the experimental results.

II. RELATED WORK

Social grouping from sensory data has recently gained
increasing attention by researchers from the computer
vision and social computing communities. One group of
works is concerned with the understanding of social situa-
tions [9, [7]. Using interpersonal distance and relative body
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Fig. 2. On-line learning of geometric intra-group relations for three persons observed by a moving robot (left). The three figures on the right
show initialization, prediction, and update of the spatial distributions. Empirical results from [13] for interpersonal distances and angles is
used for initialization. The S-shaped distribution for the person in the center is due to the constraints from both neighbors. Spatial relations
are predicted with a Brownian model and updated as soon as new tracking information is available.

orientation, Groh et al. [9] study social situation recog-
nition of standing people from static cameras. Similarly,
Cristani et al. [7] address the problem of social relation
recognition in conversation situations. Using interpersonal
distance only, they estimate pairwise stable spatial ar-
rangements called F-formations.

A second group addresses social relation recognition in
still images and video. Wang et al. [I9] extract social
relations from photographs. They use the knowledge that
social relations between people in photographs influence
their appearance and relative image position. From the
learned models, they are able to predict relationships in
previously unseen images. Social relations between film
actors in video are estimated by Ding et al. [8]. A social
network graph with temporal smoothing is learned using
actor occurrence patterns. The approach also allows for
changes in social relations over time. Choi et al. [4] recog-
nize atomic activities of individuals, interaction activities
of pairs, and collective activities of groups, jointly, using
an energy maximization framework.

A third group, most related to our context, is concerned
with detecting and tracking groups from image or range
data. Yu et al. [20] address the problem of discovery and
analysis of social networks from individuals tracked in
surveillance videos. A social network graph is built over
time from observations of interacting individuals. Social
relations between persons in overhead video data are
recognized by Pellegrini et al. [T4]. They use approximate
inference on a third-order graphical model to jointly reason
about correct person trajectories and group memberships.
Based on learned statistical models on people’s behavior
in groups, they also perform group-constraint prediction of
motion. Leal-Taixé et al. [ITI] model social and grouping
behavior from tracked individuals in video data using a
minimum-cost network flow formulation. Qin et al. [16] im-
prove tracking of individuals by considering social group-
ing in a tracklet linking approach. Using large numbers
of hypothetical partitionings of people into groups, solu-
tions are evaluated based on the geometrical similarity of
trajectories of individuals with the hypothesized group.

Lau et al. [10] track groups of people in 2D range
data and from a mobile robot. A multi-model hypothesis
tracking approach is developed to estimate the formation
of tracks into groups that split and merge. Groups are
collapsed into single states loosing the individual person

tracks. A very similar multi-model hypothesis approach
has been developed independently by Chang et al. [3] to
track and group neural signals whose locations are inferred
from clusters of observations.
In contrast, we extend the state of the art as follows:
Opposed to [9, [7, 20] 4, 14, 111 [16] which rely on static
overhead cameras to perceive the scene, we address the
problem of social grouping and tracking from a mobile
sensor and a first-person perspective. Overhead cameras
are sufficient for surveillance but fall short of scenarios
where a robot, an intelligent vehicle or an interactive
system coexists and acts in the same space with people.
Occlusions and misdetections occur much more often from
an in-scene view than in an overhead setup. Thus, our
goal is to make tracking particularly robust with respect
to lengthly occlusion events and the mobility of the sensor.
Additionally, we address the problem using 2D range
data which add the difficulty that targets have the same
appearance and cannot be distinguished to guide data
association. The use of 2D range data is relevant for robots
and intelligent vehicles where such sensors are used due to
their large field of view and robustness with respect to
illumination and vibration. The proposed approach can
obviously be applied to other sensory data, too. Further-
more, unlike [20, 14} 1T} 16l 4] which employ (partly very
slow) batch methods, our approach runs recursively and
in real-time on a laptop PC — again highly relevant for
interactive robots or vehicles that need to respond quickly
to group formation changes and unpredictable events.
Unlike [9, [7] that detect and analyze social relations on
a per-frame basis, we track such relations and the inferred
social groupings over time. To this end, we adopt the
multi-model hypothesis tracking approach developed by
Lau et al. [10] and Chang et al. [3]. The method suits our
problem as it allows to simultaneously hypothesize about
the clustering of tracks (models) and the assignment of
measurement to tracks (data association) in a consistent
probabilistic framework. However, opposed to [I0] who
represent groups of people in a single collapsed state
without spatial extension information, our approach keeps
track of both the state of individual group members
and the group affiliation. This allows for a much more
detailed group analysis such as estimating the group’s
spatial extension or understanding group activities and
social situations.
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Fig. 3. Distributions of feature values of positive and negative

samples in our training set. Left: Relative angle vs. relative speed of
tracks in the same group (green dots) and tracks not in the same
group (red dots). Right: Relative angle vs. relative distance. The
distributions are consistent with the empirical findings in [12} 13].

III. RELATION LEARNING AND GROUP DETECTION

Empirical social science studies have found three dom-
inant coherent motion indicators of people that walk
in groups [12 [13]: relative distance, relative orientation,
and similar velocity to their direct neighbors. Using this
insight, we detect social relation candidates by classifying
pairs of tracks according to their relative motion proper-
ties. The relations are used to build up a weighted social
network graph in which each person corresponds to a
node and edges are weighted with the probabilities of the
pairwise relation. Once the graph is constructed a graph-
cut algorithm is applied to extract the groups.

A. Detection of Pairwise Social Relations

A pairwise relation candidate is obtained by computing
the three coherent motion indicators for two tracks of
people (relative distance, angle and similar velocity) and
by classifying the sample. We assume tracks of people to be
represented by 2D position and velocity x; = (24 y; ¢ 9¢)
at time ¢ with orientation ¢; = atan2(g:, @) and veloc-
ity v, = /a7 + 2. With d;” being the Euclidean dis-
tance between tracks ¢,j, we have the feature vector
F? ={d}7 ¢t —¢l], |vi—v]|} and can visualize positive
and negative samples in [Fig. 3| For classifying the social
relation candidate S;” between i and j given F,"” we use a
linear SVM and map the classifier output to a probability
p(F;?)€10,1] according to Platt [I5]. The set of social re-
lation candidates of person i to his/her neighbors ji, ..., jn,
at time ¢ is then denoted as S! = {S/7", ..., 8"}

This detection result relies only on information from
a single frame/scan and is still noisy. Thus, we integrate
the classification probabilities over time and use a simple
Bayes filter to achieve smoother and more stable estimates.
Let F(t) = {Fo,...,Ft} be the sequence of all observed
feature values of a pair of people up to the current time
t, then the probability p(Si| F;) of a social relation S,
is calculated from the parent estimate p(S;—1|Fi—1) and
the current features F; in a recursive fashion using Bayes’
rule p(S¢ | F(t))=n p(Fe | St) p(Se [ Si—1) p(Si—1 | F(t—1))
with p(S¢| S¢—1) encoding the event probabilities of social
relations to arise, to be confirmed, or to break, respec-
tively. We assume uniform priors and obtain the likelihood
p(Fi| S¢) from the one-shot detection procedure.

B. Detection of Groups

After the construction of the social network graph with
filtered social relation probabilities we detect groups of
people using a graph-cut algorithm. We cut the edges with
probabilities lower than a threshold 6 and collect all con-
nected nodes using depth first search. The corresponding
person tracks of the nodes in the subgraph are marked as
group members. An example situation with six groups of
two or three members is shown in

C. Learning Geometric Intra-Group Relations

In addition to social relation probabilities between peo-
ple, we also learn geometric intra-group relations. Mous-
said et al. [I3] investigated the spatial arrangement of
pedestrians and found that people in groups form stable
patterns. Thus, we can learn such patterns for person
tracks in groups which amounts to estimating a track-
specific spatial probability distribution of a person in the
local reference frame of another person. Let r!(¢) be the
geometric relation of person track 4 in the frame of track j
and p(r?(t)) its time-dependent distribution (see .

We take a Monte Carlo approach to represent geo-
metric relations since their distributions have arbitrary
shapes, especially when used for human motion predic-
tion (in . Thus, we learn the relations by
recursively estimating a particle-based distribution for
p(rl(t)|z](0),...,2}(t)) from sequences of relative track
positions z/(t). o

Observations z] ~ N (u], X7) are obtained by transform-
ing the Gaussian state estimates from the tracker into the
local frame of person . Skipping time indices ¢, the mean is
then computed as p] = OHx;®Hx;, a so called tail-to-tail

relationship [I8] with H = [(1) (1) 8 8

obtained by first-order error propagation of the two state
covariances 3; and X; through the frame transform using
the tail-to-tail Jacobians as derived in [I§]. The proposal
distribution p(r!(t)|r}(t—1)) is chosen to be a Brownian
motion model as this model makes the least commitment
for predicting the evolution of the relation. Finally, for
the filter initialization priors, we take the values for r?(0)
from [13], learned from large-scale observations.

The three terms, proposal p(r!(t)|r](t—1)), (sampled)
Gaussian observation likelihood p(z] |r](t)), and priors
p(r}(0)) are then used in a particle filter with importance
resampling to estimate spatial relations. A complete ini-
tialization, prediction, and update cycle in a group of three

persons is illustrated in

IV. GrourP MODELING

. The covariance X7 is

An important property of our approach is the ability
to hypothesize about most likely graph partitions and
to track them over time in a multi-model hypothesis
framework. This happens recursively, based on the model
of the previous step and a set of model generation events
in the current step. In this section, we define those events
and derive their probabilities.



Let the social network graph be G and the partitioning of
the graph be the set of subgraphs {Qi}fvjl each describing a
group of people. A particular partitioning of G into groups
is called a group model M. Each tracked person belongs
to exactly one group, people without relations to others
form groups of size 1.

A. Model Generation

Groups are initialized when the tracker signals a new
track event, e.g. when a person enters the sensor field of
view. Then, a new group of size 1 is created. Social relation
computation is delayed until the track state has reached
steady state in the filter, typically after four, five steps.

Once the social grouping detection is stable, each group
can, at any point in time, be continued, split up into an
unknown number of new groups, merged with an unknown
number of other groups. Since the possible number of
model transitions is large we bound this space by assuming
that split and merge events are binary operations [10]. In
each step, a group can only split up into two child groups
and at most two groups can merge into a larger group. We
also assume that a group can not be involved into a split
and merge operation at the same time.

A group is terminated if all its members are declared as
obsolete by the tracker. The binary operation assumption
is not a sensible limitation because, for example, an instan-
taneous breakup of a group into three subgroups would be
correctly reflected by the tracker after only two cycles.

B. Model Probabilities

The probability of a model at time ¢, M(t), follows
from the probabilities of the split, merge, and continuation
events of its groups. Given the recursiveness of our prob-
lem, it conditionally depends on the model of the previous
time step in parent hypothesis Q/~! at time ¢ — 1.

We assume constant prior probabilities for continuation
events (pc), merge events (py), and split events (pg). To
further narrow down the space of possible model transi-
tions, we incorporate the actual social relation probabili-
ties into the split and merge events, thereby implementing
a data-driven aspect into the model generation step.

An existing group can only split up if none of the
tracks in the two child groups share a social relation above
probability threshold #. Thus, a split event for group G;
occurs with a probability that scales with the strongest
social relation in G;, p(S,: ). Similarly, two groups G; and
G; are only allowed to merge if there is at least one social
relation between members of those groups greater than 6.
Thus, merge events depend on the highest probability of
an across-group relation, called p(S,%ZI’).

The conditional probability of group model M (%) is then

p(M(t) [ ) = pXe T (ps (1 - p(SZ))” (1)
Gi

I (e p(S 5",
Gi,Gj

where N¢ is the number of continued groups and o; and
i; are indicator variables set to 1 if G; splits up or G;,G;
merge and 0 otherwise.

V. MuLTI-MODEL HYPOTHESIS TRACKING OF GROUPS

In this section, we present the multi-model hypothesis
tracking framework and its application to describe dy-
namic group formation processes.

The approach relies on the multi-hypothesis tracking
approach (MHT) by Reid [I7] and Cox et al. [5] and its
extension to incorporate a multi model-hypothesis step by
Lau et al. [10] and Chang et al. [3]. For reasons of limited
space we give a brief summary of the method, for more
details the reader is referred to the original papers.

The MHT algorithm hypothesizes about the state of the
world by considering all statistically feasible assignments
between measurements and tracks and all possible inter-
pretations of measurements as false alarms or new track
and tracks as matched, occluded or obsolete. A hypothesis
Q! is one possible set of assignments and interpretations
at time ¢. Let Z(¢t) = {2;(¢t)}; be the set of m, detected
people and ;(t) the set of assignments which associates
predicted tracks to measurements in Z(t). Further, let Z*
be the set of all measurements up to time ¢. Starting from
a hypothesis of the previous time step, called a parent
hypothesis Q?(il, and a new set Z(t), there are many
possible assignment sets 1 (t), each giving birth to a child
hypothesis that branches off the parent. This makes up
an exponentially growing hypothesis tree. For a real-time
implementation, the growing tree needs to be pruned. To
guide the pruning, each hypothesis receives a probability,
recursively calculated as the product of a normalizer 7,
a measurement likelihood, an assignment set probability
and the parent hypothesis probability,

PLIZY = np(Z() | (). Q) (2)

pi(t) [ 5, 2570 p(Q) | Z271).

The extension to a multi-model tracking approach that
hypothesizes over both, data associations and models is as
follows: the multi-model MHT introduces an intermediate
tree level at each time step, on which models spring off from
parent hypotheses. Each model branch has its own data
association tree, conditioned on that model. Formally, this
adds a model probability term to and introduces the
model as a conditioning variable (see derivation in [10]),

POLIZY = np(Z() | (D, M®,25) ()

p(it) | M (1), 917}, 2'7)

p(M ()| Q) p(Q) | Z271).

The model probability term is defined in The final
expression for is rather simple as many variables
cancel out after substitution. This property is retained
with the multi-model hypothesis extension.

For pruning this tree, we pursue two effective strategies:
on the level of the regular data association MHT, we



employ multi-parent k-best branching according to [6]
which generates only the global & most probable hypothe-
ses in polynomial time. Furthermore, in our experiments
we have found that parents may branch into multiple
child models of similar (high) probability, causing the
tracker to loose diversity since the tree concentrates on few
probable branches. Thus, we also bound model branching
to the most [ < k most probable models that arise from a
common parent hypothesis.

VI. GROUP-ENABLED PEOPLE TRACKING

At this point, we are able to find and keep track of
groups of people and hypothesize about their formation
processes. This knowledge is already relevant for human-
robot interaction or robot navigation tasks among people.
In addition to this, we can feed back the social grouping
information to improve tracking on the person level: we
use the social relation information to adapt the occlusion
probabilities of individual tracks in groups and make con-
straint motion predictions for such tracks via the learned
spatial intra-group relations.

A. Integration of Social Relations

When perceiving the scene from a first-person per-
spective, occlusions occur particularly often for people in
groups. Thus, person tracks for which the system predicts
a high social relation probability will have a higher occlu-
sion probability. Formally, this can be implemented using
a simple extension of the MHT initially developed for leg
tracks in [I]. The extension allows the MHT to not only
reason about the interpretation of tracks to be detected
or deleted (as in [I7], [5]) but also to be occluded. This
implies a generalization to an arbitrary number of track
interpretation labels and the modeling of their numbers
in an assignment set by a multinomial distribution. With
occlusion being a label on its own, we can adapt the
occlusion probability of individual tracks dynamically.

This involves learning a set of constant probabilities for
the final expression of p(Q!|Z*). While the non-adaptive
MHT has parameters for track detection, occlusion and
deletion events, denoted pges, Poce and pger, the MHT with
adaptive occlusion probabilities requires to learn those
probabilities for tracks in groups separately, pget|G; Pocc|a
and p gy - Both sets, learned from large-scale datasets, are
subject to the multinomial constraint pge: +pdei +Pocc = 1.

Finally, during tracking, the parameter set pget, Pdel,
Poce 18 used for tracks without social relations and the set
Ddet|G> Pdel|G> Poce|c 18 used for person tracks in groups.

B. Integration of Geometric Relations

Geometric relations are used for better prediction of
human motion in groups. Based on the observation that
people in groups largely maintain their spatial organiza-
tion [I2] 13], the learned relations will enable us to predict
occluded group members over the visible group members.

Let R;(t) = {r/ (t)}j\]:1 be the set of geometric relations
of track i to the IV, neighboring tracks in the same group,

Fig. 4. Effect of the constrained motion prediction from intra-group
relations. Left: without geometric relations, Right: with relations.
Colored circles, dots, and lines show position uncertainties, motion
particles, and trajectories, respectively. The curvilinear motion model
allows to readily incorporate the on-line learned relations and main-
tains the spatial organization of groups also during maneuvers.

then the motion model p(x;| x;—1, R(t—1)) becomes con-
ditioned on both, the previous track state x;_; and the
set R(t—1) at time index t—1. According to our particle-
based representation of geometric relations, we represent
our target distribution with a set of weighted samples

pOxil X1, R(E=1)) = D w6 o (x1) (4)

where 0, (x¢) is the impulse function centered at xt(’).

Sampling directly from this distribution is intractable in
practice which is why we take a Monte Carlo approach, in
which samples are first drawn from a proposal distribution
m and then evaluated according to the mismatch between
the target distribution 7 and the proposal distribution. In
our case, the distribution is approximated by the following
factorization

Pt %1, R(E=1)) = p(xi[x;-1) p(xe| R(E=1))  (5)

where we choose a motion model p(xgi)| X¢—1) as proposal
distribution and evaluate the samples according to
iy _ p(xe|x—1, R(E-1)) i
i) = 5 = p(x"|R(t=1)).  (6)
PO [ xi1)

In other words, samples are first spread out into the state
space by p(xgl) | x:—1) and then weighted according to the
set of geometric relations R(t — 1).

For p(xgz)\xt_l), we take the curvilinear model by
Best and Norton [2] which is especially well suited for
maneuvering targets. Unlike the constant velocity model
it accounts for both, (cross-track) normal and (along-
track) tangential target accelerations needed to properly
maintain the spatial intra-group relations during direc-
tion changes of the entire group . Let xt(l) =
(z¢ y: 24 ¥ )T be the state of particle i, a; = (a; a, )”
the vector of tangential and normal accelerations, and A
the constant velocity transition matrix, then the particle
states evolve according to

X = AxP + Gy@? + q) (7)

with zero-mean Gaussian noise ¢;. The details on the 4 x 2
forcing matrix G can be found in [2].

To evaluate the likelihood p(xt(z)| R(t—1)) of particle i
we consider the N, geometric relations of R(t—1) as
components of a mixture with equal mixture weights.



TABLE 1
RESULTS OF THE SOCIAL RELATION DETECTION ON THE TRAINING SET
(TRAINING), THE TEST SET WITHOUT BAYESIAN SMOOTHING
(ONE-SHOT), AND WITH THE BAYES FILTER (FILTERED).

| Approach | TP [ FP | TN | FN [ PR | RE [ ACC |

training 6342 | 879 | 12703 | 520 | 0.88 | 0.92 | 0.93
one-shot 4598 | 733 | 12849 | 2264 | 0.86 | 0.67 | 0.85
filtered 5701 | 1256 | 12326 | 1161 | 0.81 | 0.83 | 0.88

During tracking, visible group tracks are predicted using
a constant velocity motion model and, after the Kalman
update, are used to predict tracks of the same group that
have been declared as occluded by the MHT. The occluded
tracks are predicted by spreading their particles according
to[Eq. 71 To evaluate their weights, the geometric relations
need to be transformed into the reference frame of the
tracker. If all group members were occluded, motion pre-
diction would fall back onto the constant velocity model.

VII. EXPERIMENTS

We will now evaluate the proposed tracker and analyze
the contribution of all extensions to the tracking perfor-
mance. The experiments are carried out on two exemplary
data sets collected with our mobile robot DARYL and two
large, unscripted outdoor data sets collected in a city cen-
ter and a main station environment during a regular work
day. The sensor is always a SICK LMS 291 laser range
finder at around 0.80 m height and 0.5 deg angular reso-
lution. The large outdoor data sets of 55,475 and 33,204
frames (25 and 15 min, respectively), recorded at fairly
busy city locations, contain data on individuals, couples,
groups of people, bicycles, cars, wheelchairs, skaters and
person-shaped static obstacles that all undergo countless
occlusions (see for an example frame). The data have
been manually annotated to determine the detection, data
association, and social grouping ground truth. Criteria
for social grouping annotations were people’s trajectories,
behaviors, and appearances (camera data were available).
In detail, the city center data set consists of 10,000 frames
with 190 persons including 31 groups. The main station set
contains 6,000 frames, 168 person tracks, and 25 groups.

The person detector for 2D range data, which is a
boosted feature-based classifier [I], the linear SVM for
detecting social relations, and the MHT parameters have
all been learned on a separate training set with 95 tracks
over 28,242 frames. The MHT parameters are as follows:
the detection, occlusion, and deletion probabilities are
Pdet = 0.7, Doce = 0.27, and pge; = 0.03, respectively. The
Poisson rates for false alarms and new tracks in the
MHT are Ape,y = 0.0003 and Ay, = 0.005, and the param-
eters for people in groups are pgeijg = 0.6, pocejc = 0.39,
Pdetjc = 0.01. Geometric relations are learned and pre-
dicted using 200 particles per track. The maximum num-
ber of MHT hypothesis is £ =100 and the maximum
number of model branches per hypothesis is I = 10.

As tracking performance measure we employ the MOTA
metrics and count three numbers with respect to ground
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Fig. 5. Comparison of the filtered per-frame approach vs. the track-
ing approach. Three people meet, interact, and split up (left column)
with trajectories shown in the top right image. The bottom right
graph shows the group formation process and person-level tracking
accuracy. The smoothing approach (red) overly delays group merge
and split events and cause the accuracy (solid) to drop. Tracked social
relations (green) are clearly closer to ground truth (blue).

truth: misses (missing person tracks that should exist
at a ground truth position, FN), false positives (person
tracks that should not exist, FP), and mismatches (track
identifier switches, ID). From these numbers the tracking
accuracy MOTA is determined as 1 — i:}:, with #err
being the number of tracking errors #err = FN+ FP+ 1D
and #evt the number of tracking events over the length of
the experiment. Note that due to the normalization by the
total number of events, even large reductions of the errors

may result in only small changes of the MOTA score.

A. Detecting Social Relations

We first evaluate the accuracy of the social relation
detection and the impact of the Bayesian filtering.

On the training set, the detection accuracy of the SVM
classifier is 93% with only 879 false positives (FP) and
520 false negatives (FN). During tracking on the test set,
this decreases to 85% accuracy mostly due to missed social
relations (2264 FN) during the track initialization phase
when the orientation and velocity state estimates are not
yet in steady state. Bayes filtering the social relation prob-
abilities improves the number of misses by 50% but comes
at the expense of delayed responses, e.g. when people
leave a group. This causes the number of false positives to
increase by almost a factor of two. The overall detection
accuracy is 88%. See for all numbers including
precision (PR), recall (RE), and accuracy (ACC).

This accuracy is sufficient for our purposes. However,
inferring relations only from motion features is clearly
limited and future work will focus on recognizing more
attributes of people as cues for social relations.

B. Tracking Social Relations

When evaluating the impact of tracking the social
grouping hypotheses, we find that the proposed approach
is able to resolve the trade off between lower numbers
of false negatives and delayed response times. This is
demonstrated in the indoor experiment in where



TABLE II

TRACKING PERFORMANCE RESULTS ON THE LARGE-SCALE DATA SETS USING 100 HYPOTHESES.

Data Set Approach [ FN [ FP [ ID | MOTA | H:
. baseline 4746 2344 261 79.6% 52.5
2 geometric rel. 4179 (-11.9%) 2287 (-2.4%) 206 (-21.1%) 81.5% 25.2
§ Bayes filtered social rel. 3407 (-28.2%) 2752 (+17.4%) 196 (-24.9%) 82.4% 27.8
5 T geometric rel. 3169 (-33.2%) | 2808 (+19.8%) | 171 (-34.4%) 83.0% | 205
':"‘j tracked social rel. 3600 (-24.1%) 2387 (+1.8%) 179 (-31.4%) 82.9% 29.6

+ geometric rel. 3472 (-26.8%) 2390 (+1.9%) 162 (-37.9%) 83.3% 17.6
o baseline 2949 2982 360 81.4% 31.1
S geometric rel. 2342 (20.6%) | 3138 (15.2%) | 284 (21.1%) 83.0% | 237
8 Bayes filtered social rel. 2067 (-29.9%) 3488 (+16.9%) 245 (-31.9%) 82.9% 25.3
- T geometric rel. 1878 (-36.3%) | 3459 (+15.9%) | 231 (-35.8%) 83.6% 18.8
g tracked social rel. 2122 (-28.0%) 3158 (45.9%) 202 (-43.9%) 83.8% 23.7
& t geometric rel. 2108 (-28.5%) | 3150 (+5.6%) | 193 (-46.4%) 83.9% 18.4

Fig. 6. The mobile robot observes a group of three persons that
undergo a turn maneuver. Colored circles and dots show position
uncertainties and trajectories, flat semi-circles denote occlusions.
Left: The baseline tracker does a poor job of predicting occluded
tracks during the maneuver and looses one person (colored in pink,
re-initialized in green). Right: Using social and geometric information
during tracking, the inter-group organization is maintained over
occlusions and no track loss occurs.

three people meet, form a group during interaction and
split up again. The multi-model hypothesis tracker is able
to reflect those group formation changes much faster than
the Bayesian smoothing approach (see dotted lines in
bottom-right diagram). This is due to the ability of the
multi-hypothesis approach to consider multiple model ex-
planations at a time and backtrack to branches that have
become more probable with more incoming information.
The delayed responses of the Bayesian approach make
that the group merge phase lags behind and that the
persons are kept in one group overly long after the split
up. The solid lines in the same diagram show the person-
level tracking accuracy (MOTA) which is consistently high
for the multi-hypothesis tracking approach versus a drop
from 87% to 81% for the Bayesian filtering approach.

While in this experiment the improvement seems not
dramatic, the faster response times are crucial for robots
that reactively navigate among people.

C. Geometric and Social Relations During Tracking

In this experiment, we evaluate the adaptive occlusion
probabilities, the on-line estimated geometric relations,
and their ability to predict group tracks over lengthy
occlusions. The baseline is the tracker without social and
geometric information. During a sequence of six minutes
three persons were instructed to walk and stand in the
vicinity of the robot while changing their spatial arrange-
ment. The robot was moving during the experiment.

An example situation is shown in during a turn

of the group. The baseline approach is unable to maintain
the spatial organization of the group and looses track of
one person. The total number of track losses during the
experiment is 12. The proposed system with social and
geometric relations maintains the spatial organization and
has no track loss. The particle filter is also able to quickly
adapt the on-line learned geometric relations to changes
of the spatial group arrangement.

D. People Tracking using Social and Spatial Information

Finally, we evaluate the multi-model hypothesis MHT
on two large-scale outdoor data sets (city center and main
station). We compare it to a regular MHT without the
group model hypothesis extension and study the contri-
butions of the social and geometric relation information
separately (see . Hereafter, we discuss the results:

Geometric Relations (2nd row): Using on-line estimated
geometric intra-group relations for motion prediction of
tracks has a positive effect on the number of false negatives
FN (-11,9%/-20,6%) and track ID switches (-21,1%), and
a neutral effect on the number of false positives FP
(-2,4%/+5,2%). As shown in the relations allow
the tracker to properly track persons during occlusions
and group maneuvers. It is noteworthy that the approach
finds a good trade-off between occlusion handling and an
increase of false positive tracks. Naive methods handle
occlusions simply by delaying the deletion of tracks but
cause the number of wrong tracks (e.g. from false positive
people detections) to persist longer in the system as well.
Ergo, the result suggests that the approach of learning
spatial group arrangements is a well suited method to deal
with occlusions in our context.

Smoothed vs. Tracked Social Relations (3rd and 5th row):
The Bayesian filtering approach appears to have this very
problem. It improves the FN and ID measures but causes
a significant increase in the FP measure. The method is
too simple to find a good track management trade-off, one
reason being the slow response to group formation changes
as already shown in In contrast, the multi-model
hypothesis approach finds the so far best FP versus FN/ID
trade-off. This is mainly due to the faster response times
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Tracking sequence in the city center data set. The cylinders and dots show positions and trajectories. People in the same groups

have identical color, those in grey and green share no social relations. The green-colored track (correctly) does not merge with the red group
(max. social relation probability 0.396 in frame 3). The person in light red merges with the red group in frame 2 and splits up in frame 5.

to group formation changes and a proper incorporation of
domain knowledge into occlusion handling.

Combining Social and Geometric Information (4th and
6th row): Adding the constraint-based motion prediction
model improves both approaches (Bayes filter and multi-
model hypothesis MHT) in most measures. In this setting,
the multi-model hypothesis MHT yields the overall best
results, expressed also by the highest MOTA scores. Notice
that we achieved a key improvement over the baseline of
-38%/-46% fewer track ID switches, the most important
performance measure in scenarios that involve interaction
with and motion prediction of people.

Finally, with a cycle time of at least 17.6 Hz on a stan-
dard laptop PC, the approach is well applicable under real-
time conditions. An example sequence of group formations
with the tracking results in shown in

VIII. CONCLUSIONS

In this paper we have addressed the problem of detecting
and learning socio-spatial relations between people as
well as inferring and tracking their social groupings. The
proposed approach, that relies on an extension of a multi-
hypothesis tracking approach, also improves person-level
tracking in two ways: the social grouping information is
used to predict human motion over learned intra-group
constraints and to support data association by adapting
track-specific occlusion probabilities.

Opposed to most related works that use static overhead
cameras and batch approaches, we address the problem
from a mobile platform, learn geometric relations in an
on-line fashion and track group affiliations with a recursive
multi-model hypothesis tracker in real-time. With roughly
40% fewer track identity switches and 28% fewer false
negative tracks, the results suggest that tracking people
in 2D range data can strongly benefit from estimates on
social and geometrical relations, mostly due to their ability
to explain lengthy occlusion events.

In future work we plan to use RGB-D data and incorpo-
rate additional attribute information on people such as age
and gender to further improve social relation estimation.
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