
Bingham Distribution-Based Linear Filter for Online Pose Estimation

Rangaprasad Arun Srivatsan, Mengyun Xu, Nicolas Zevallos and Howie Choset
Robotics Institute, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213.
Email: (arangapr,mengyunx,nzevallo)@andrew.cmu.edu, choset@cs.cmu.edu

Abstract—Pose estimation is central to several robotics ap-
plications such as registration, hand-eye calibration, SLAM,
etc. Online pose estimation methods typically use Gaussian
distributions to describe the uncertainty in the pose parameters.
Such a description can be inadequate when using parameters
such as unit-quaternions that are not unimodally distributed. A
Bingham distribution can effectively model the uncertainty in
unit-quaternions, as it has antipodal symmetry and is defined
on a unit-hypersphere. A combination of Gaussian and Bingham
distributions is used to develop a linear filter that accurately
estimates the distribution of the pose parameters, in their true
space. To the best of our knowledge our approach is the first
implementation to use a Bingham distribution for 6 DoF pose
estimation. Experiments assert that this approach is robust to
initial estimation errors as well as sensor noise. Compared to
state of the art methods, our approach takes fewer iterations
to converge onto the correct pose estimate. The efficacy of the
formulation is illustrated with a number of simulated examples
on standard datasets as well as real-world experiments.

I. INTRODUCTION

Several applications in robotics require estimation of pose
(translation and orientation) between a model frame and a
sensor frame, for example, medical image registration [21],
manipulation [5], hand-eye calibration [6] and navigation [5].
Filtering-based online pose estimation techniques have particu-
larly been a popular choice due to their ability to adapt to noisy
sensor measurements. Most of the current filtering methods use
unimodal Gaussian distribution for modeling the uncertainty
in the pose parameters. Such a distribution is a good choice
to capture the uncertainty in paramaters that are defined in a
Euclidean space. However, the uncertainty in parameters such
as unit-quaternions when modeled using a Gaussian does not
consider the structure of the underlying space, i.e, antipodal
symmetry introduced by q̃ = −q̃ [18]. This work introduces
an online pose estimation method that uses a combination of
Bingham and Gaussian distribution to accurately and robustly
estimate the pose.

Most of the prior work on online pose estimation linearize
the non-linear measurement model. This results in inaccurate
estimates especially when the initial pose estimate is erro-
neous. In order to address this issue, recently Srivatsan et.
al. [29] used dual-quaternions and developed a linear Kalman
filter which is robust to initial pose errors. In this work, a
Bingham distribution is used to model the uncertainty in the
pose parameters, and a linear measurement model is adapted
from [29] to develop a linear filter for online pose estimation.
The Bingham distribution is defined on a unit hypersphere and
captures the bimodality of the unit-quaternions [3] (see Fig. 1).
When compared to prior methods, the use of the Bingham

Fig. 1. A 2D Bingham distribution: z = 1
N

exp(sTMZMT s), where
M = I2×2, Z = diag(0,−10), and s = (x, y). The mode is at x =
±1, y = 0. More details can be obtained from Sec. III-B.

distribution results in a more principled formulation that has
lower computation time, because there is no normalization step
or projection onto a hyper-sphere. Another advantage of our
approach compared to existing methods [29, 21, 22] is the
ability to update the pose using surface-normal measurements
as well as simultaneous multiple measurements (as obtained
from a stereo camera or lidar).

Inspired by [14, 29], the pose is estimated by decoupling
orientation from translation estimation, in this work. The
method uses a Bingham distribution-based filtering (BF) for
orientation estimation and a Gaussian distribution for transla-
tion estimation. While there has been some recent work on
using the BF for orientation estimation [18, 9], there are some
key differences compared to our approach. Firstly, prior work
assumes that the state and measurements both are unit quater-
nions. This is not true in our case, since our measurements are
point locations. Secondly, prior works deal with non-linear
measurement models, hence resorting to unscented filtering.
This results in computation of the normalization constant
which is known to be expensive [10, 18]. Our approach uses a
linear model (as developed by Srivatsan et. al. [29]) and hence
bypasses the computation of normalization constant.

In this work, we systematically estimate the pose for cases
with position measurements as well as surface-normal mea-
surements. In Sec. V comparison to state-of-the-art methods
are provided. Our approach produces accurate estimates even
in the presence of high initial errors and sensor noise, with
fewer iterations. Finally, this work focuses on static pose
estimation, but the ideas presented can be easily adapted to
dynamic pose estimation. More details on this can be obtained
from Sec. VI.



II. RELATED WORK

Batch Processing Approaches

Pose estimation has been of interest for a long time in the
robotics literature. Much of the early literature deals with col-
lecting all sensor measurements and processing them offline in
a batch to estimate the pose. Horn et al. [14] developed a least
squares implementation for pose estimation with known point
correspondence. Besl et al. [1] introduced the iterative closest
point (ICP), which extends Horn’s methods for unknown point
correspondence by iteratively estimating point correspondence
and performing least squares optimization. Several variants
to the ICP have been developed [25, 32]. Thrun et al. [26]
further generalized the ICP by incorporating measurement
noise uncertainties. Taylor et al. [2] have recently developed a
probabilistic framework to estimate pose using surface-normal
in addition to position measurements, while incorporating
measurement uncertainty similar to [26].

Probabilistic Sequential Estimation

Probabilistic sequential estimation approaches provide se-
quential state updates based on a continuous stream of sensor
measurements. The uncertainty in the state variables is often
modeled using probability distributions functions (pdf) and the
parameters of the pdf are updated after each measurement. In
contrast to batch estimation methods, where there is no indica-
tion of when to stop collecting measurements, convergence of
the state estimate and decrease in the state uncertainty provides
clear indication of when to stop collecting measurements

Gaussian Filtering Approaches: Several sequential estima-
tion methods are based on Kalman filters, which model the
states and measurements using Gaussian distributions [22, 21,
13, 29]. Kalman filters by construction provide optimal state
estimates when the process and measurement models are linear
and the states and measurements are Gaussian distributed [15].
Pose estimation is inherently a non-linear problem, and hence
linear Kalman filters produce poor estimates [13]. Several
variants of the Kalman filter have been introduced to han-
dle the non-linearity. EKF-based filters perform first-order
linear approximations of the non-linear models and produce
estimates which are known to diverge in the presence of
high initial estimation errors [21]. UKF-based methods utilize
evaluation at multiple points, which can be expensive for a
high-dimensional system such as SE(3). UKF-based methods
also require tuning a number of parameters, which can be
unintuitive.

Non-Gaussian Filtering Approaches: There has been some
recent work in robotics towards the use of alternative distri-
butions to model the noise on rotations for pose estimation
problems. For example, Langevin distributions have been used
for pose estimation [4, 24]. Henebeck et al. have recently
developed a Bingham distribution-based recursive filtering
approach for orientation estimation [9]. Glover et al. [10]
use Bingham distribution to describe the orientation features,
while Hanebeck et al. use this distribution for planar pose
estimation [8]. Our work takes inspiration from these works

for modeling the uncertainty in the orientation using Bingham
distribution. The use of Bingham distribution to model un-
certainties in rotation parameters is a very valuable tool that
has been largely under-utilized by the robotics community,
as also noted by [10]. One of the important reasons for this,
is the difficulty in computing the normalization constant as
well as performing expensive convolution operation over the
distributions [3]; which are both avoided in our approach. To
the best of our knowledge our approach is the first of its kind
that uses the BF for 6 DoF pose estimation.

Alternate Parameterizations for Filtering: Prior work also
has looked at several parameterizations of SE(3) that would
improve the performance of the filters. In [13] the state
variables are confined over a known Riemannian manifold
and a UKF is used to estimate the pose. Quaternions are
used to parametrize SO(3) and the state is estimated using
an EKF in [20] and UKF in [19]. An iterated EKF with dual
quaternions to parameterize the pose has been used in [11].

Linear Filtering Approach: Srivatsan et al. [29] have re-
cently developed a linear Kalman filter for pose estimation
using dual quaternions and pairwise measurement update.
While this method has been shown to be robust to errors in
initial state estimate and sensor noise, it has a few drawbacks:
(1) The uncertainty in the quaternions used for orientation
estimate were modeled using Gaussians which do not consider
the condition, q̃ and −q̃ represent the same rotation. (2)
The filter by itself does not produce unit-quaternion estimates
and hence after each estimate, a projection step is used to
normalize the state. Such a projection would be difficult to
implement if the estimated state had a near zero norm. (3) The
approach only performs pairwise measurement update. How-
ever, in many practical applications such as image registration,
several (≈ 104) measurements are available for processing
in each update step; and a pairwise update could be very
inefficient and time consuming.

III. MATHEMATICAL BACKGROUND

Before going into the description of the linear filter for pose
estimation, we provide a brief introduction to the concepts of
quaternions and the Bingham distribution.

A. Quaternions

While there are many representations for SO(3) elements
such as Euler angles, Rodrigues parameters, axis angles, etc, in
this work we use unit-quaternions. We prefer the quaternions
because their elements vary continuously over the unit sphere
S3 as the orientation changes, avoiding discontinuous jumps
(inherent to three-dimensional parameterizations).

A quaternion q̃ is a 4-tuple:

q̃ = (q0, q1, q2, q3), q̃ ∈ R4,

where q0 is the scalar part and q = (q1, q2, q3)
T =

vec (q̃) is the vector part of the quaternion.
Sometimes an alternate convention is used where
q̃ = (q1, q2, q3, q0) = (vec(q̃), scalar(q̃)) [3].



1) Quaternion Multiplication: Multiplication of two quater-
nions p̃ and q̃ is given by

p̃� q̃ =

[
p0 −pT

p p× + p0I3

]
q =

[
q0 −qT

q −q× + q0I3

]
p (1)

where � is the quaternion multiplication operator and [v]× is
the skew-symmetric matrix formed from the vector v.

2) Quaternion Conjugate: Given a quaternion q̃, its con-
jugate q̃∗ can be written as: q̃∗ = (q0,−q1,−q2,−q3). The
norm of a quaternion is ||q̃|| =

√
scalar(q̃ � q̃∗).

3) Unit Quaternions: A unit quaternion is one with ||q̃|| =
1. Unit quaternions can be used to represent rotation about an
axis (denoted by the unit vector k) by an angle θ ∈ [−π, π]
as follows

q̃ =

(
cos

(
θ

2

)
,k sin

(
θ

2

))
. (2)

Since rotating about k axis by θ is the same as rotating about
−k axis by −θ, q̃ and −q̃ both represent the same rotation.
A point b can be rotated by a quaternion q̃ to obtain a new
point a as shown,

ã = q̃ � b̃� q̃∗, (3)

where ã = (0,a) and b̃ = (0, b) are quaternion representa-
tions of a, b respectively.

B. Bingham distribution

The Bingham distribution was introduced in [3] as an
extension of the Gaussian distribution, conditioned to lie on
the surface of a unit hyper-sphere. The Bingham distribution
is widely used to analyze paleomagnetic data [17], com-
puter vision [12] and directional statistics [3] and recently in
robotics [18, 9, 10, 8].

Definition 1. Let Sd−1 = {x ∈ Rd : ||x|| = 1} ⊂ Rd be
the unit hypersphere in Rd. The probability density function
f : Sd−1 → R of a Bingham distribution is given by

f(x) =
1

N
exp(xTMZMTx),

where M ∈ Rd×d is an orthogonal matrix (MMT =
MTM = Id×d), Z = diag(0, z1, . . . , zd−1) ∈ Rd×d with
0 ≥ z1 ≥ · · · ≥ zd−1 is known as the concentration matrix,
and N is a normalization constant.

1) Mode of the Distribution: It can be shown that adding
a multiple of the identity matrix Id×d to Z does not change
the distribution [3]. Thus, we conveniently force the first entry
of Z to be zero [3]. Because it is possible to swap columns
of M and the corresponding diagonal entries in Z without
changing the distribution, we can enforce z1 ≥ · · · ≥ zd1.
This representation allows us to obtain the mode of the
distribution very easily by taking the first column of M . Note
that sometimes an alternate convention is used in literature,
wherein Z is chosen such that the last entry of Z is 0
and the last column of M is chosen as the mode of the
distribution [18, 3].

2) Normalization Constant: The normalization constant N
is given by

N =

∫
Sd−1

exp(xTZx)dx,

The matrix M is not a part of the normalization constant,
because N(Z) = N(MZMT ) [3]. Computation of the nor-
malization constant is difficult and often one resorts to some
form of approximation such as saddle point approximations,
or precomputed lookup tables ( see [10] and the references
therein).

3) Antipodal Symmetry: An example of the PDF for two
dimensions (d = 2) is shown in Fig. 1. The PDF is antipodally
symmetric, i.e., f(x) = f(−x) holds for all x ∈ Sd−1. The
antipodal symmetry is important when dealing with distribu-
tion of unit-quaternions, because the q̃ and −q̃ describe the
same rotation. The Bingham distribution with d = 4 is used to
describe the uncertainty in the space of the unit-quaternions.

4) Product of two Bingham Distributions: Similar
to a Gaussian, the product of two Bingham PDFs
is a Bingham distribution, which can be rescaled to
form a PDF [18]. Consider two Bingham distributions
fi(x) =

1
Ni

exp
(
xTM iZiM

T
i x
)

, i = 1, 2. Then,

f1(x)·f2(x)

=
1

N1N2
exp(xT

(
M1Z1M

T
1 +M2Z2M

T
2

)
︸ ︷︷ ︸

A

x)

∝ 1

N
exp

(
xTMZMTx

)
, (4)

where N is the new normalization constant after renormal-
ization, M is composed of the unit eigenvectors of A.
Z = D−D11Id×d where D has the eigenvalues of A (sorted
in descending order) and D11 refers to the largest eigenvalue.

5) Calculating the Covariance: Even though a Bingham
distributed random vector x only takes values on the unit
hyper-sphere, it is still possible to compute a covariance matrix
in Rd, which is given by: Cov(x) = E(x2) − E(x)2 [18].
Upon simplification one obtains

Cov(x) = −0.5
(
M(Z + cI)MT

)−1
, (5)

where c ∈ R can be arbitrarily chosen as long as (Z + cI)) is
negative definite [9]. Without loss of generality c = min(zi)
is chosen in this work.

6) Composition of two Bingham Distributions: Composi-
tion can be useful when we want to disturb a system whose
uncertainties are modeled with a Bingham distribution with
a Bingham distributed noise. Unfortunately, the Bingham
distribution is not closed under composition and we can only
approximate the composition as a Bingham [3]. Given two
Bingham distributions f1 and f2, their covariance matrices
Cov1, Cov2 are first composed to obtain Cov3. The parameters
of the approximate Bingham distribution obtained by compo-
sition, are then calculated using Eq. 5 (More details can be
obtained from [18]).



IV. PROBLEM FORMULATION

In this work we consider pose estimation applications that
use– 1) position measurements and 2) position and surface-
normal measurements. The measurement model for both these
cases are typically non-linear [2]. Inspired by [29], we derive
linear models for both these cases.

A. Position Measurements

Let ai, bi ∈ R3, (i = 1, . . . , n) be the locations of n points
in two different reference frames whose relative pose is to be
estimated. The relation between points ai and bi, is given by

ai = Rbi + t, i = 1, . . . , n, (6)

where R ∈ SO(3) and t ∈ R3. In an application such as
point-registration, ai are points in CAD-model frame and bi
are points in sensor frame respectively.

1) Update Model: First consider the scenario where points
in the sensor frame are obtained one at a time in a sequential
manner, as typically observed in the case of robotic prob-
ing [28]. Similar to [29], the equations for updating the pose
estimate given a pair of measurements (n = 2), are derived.
From Eq. 3, Eq. 6 can be rewritten as

ã1 = q̃ � b̃1 � q̃∗ + t̃, (7)

ã2 = q̃ � b̃2 � q̃∗ + t̃, (8)

where q̃ is as defined in Eq. 2 and t̃ = (0, t). Subtracting
Eq. 8 from Eq. 7,

ã1 − ã2 = q̃ � (b̃1 − b̃2)� q̃∗,

⇒(ã1 − ã2)� q̃ = q̃ � (b̃1 − b̃2), (9)

since q̃ is a unit-quaternion. Using matrix form of quaternion
multiplication shown in Eq. 1, Eq. 9 can be rewritten as

Hq = 0, where (10)

H =

[
0 −(av − bv)

T

(av − bv) (av + bv)
×

]
∈ R4×4, (11)

av = a1 − a2 and bv = b1 − b2. Notice that Eq. 10 is a
linear equation in terms of q and is independent of t. Upon
obtaining the q which lies in the null space of H , t can be
obtained by adding Eq. 7 and Eq. 8,

ã1 + ã2 = q̃ � (b̃1 + b̃2)� q̃∗ + 2t,

⇒t =
(ã1 + ã2)− q̃ � (b̃1 − b̃2)� q̃∗

2
. (12)

Eq. 10 and Eq. 12 were derived in [29] using dual quater-
nions, however, no geometrical intuition was provided. Fig. 2
provides the geometrical intuition behind the decoupled esti-
mation of q and t. Estimating the pose between ai and bi,
can be reduced to first estimating the orientation of vectors
aij
v and bijv and then estimating the translation between the

centroids of the points. A similar idea is commonly used in
Horn’s method [14]. A key difference is that instead of forming
vectors av = a1 − a2 and bv = b1 − b2, Horn’s method uses

Fig. 2. Blue points (left) indicate ai and red points (right) indicate bi.
Our approach constructs vectors aij

v = (ai − aj) and bijv = (bi − bj) as
shown by black arrows. The Bingham filter estimates the orientation between
the black vectors. Horn’s method [14] on the other hand, finds the orientation
between the green dashed vectors. While the black vectors can be constructed
online as the point measurements are received sequentially, the green-dashed
vectors can be constructed only after all the data is collected.

av = a1 − ac and bv = b1 − bc, where ac and bc are the
centroids of ai and bi respectively.

Further, Eq. 10 is similar to the one used by Hebert et al. [7].
However, in [7] uncertainties in sensor measurements were
not considered while estimating q. In this work, we model the
uncertainty in the sensor measurements ai, bi using Gaussian
distribution. Let as

i = ai + δai and bsi = bi + δbi, where
(·)s is a sensor measurement, and δ(·) is the noise as sampled
from a zero mean Gaussian. Eq. 10 can be rewritten as

H(a1,a2, b1, b2)q = 0,

H(as
1,a

s
2, b

s
1, b

s
2)q +G(q)µ = 0, (13)

where µ = (δa1, δa2, δb1, δb2)
T and the expression for G(q)

can be obtained from Eq. 37 of [29]. It can be shown than
G(q)µ is a zero mean Gaussian noise, N (0,Q), where the
uncertainty Q is obtained analytically as shown in Sec. IV C
of [29].

2) Linear Filter: In order to obtain an estimate of q from
Eq. 10, we use a Bingham distribution to model the uncertainty
in q,

p(q) =
1

N1
exp(qT Mk−1Zk−1M

T
k−1︸ ︷︷ ︸

D1

q). (14)

If the pose was changing with time, then a suitable process
model can be employed as shown in [9]. In this work, we
focus on static pose estimation and hence do not need a
process model to evolve the pose estimate over time. Position
measurements are obtained, which are in turn used to update
the pose estimate. The pose is updated once for every pair
of measurements received. The following is the probability of
obtaining a sensor measurement zk, given the state qk,

p(zk|qk) =
1

N2
exp

(
−1

2
(zk − h(qk))

TQ−1k (zk − h(qk))

)
,

(15)



where h(qk) is the expected sensor measurement and Qk is
the measurement uncertainty. From Eq. 13, the measurement is
set to zk = 0 and measurement model is set to h(qk) = Hqk.
Since zk = 0 is not a true measurement, it is often referred
to as pseudo-measurement in literature [23].

Thus Eq. 15 can be rewritten for our case as,

p(zk|qk) =
1

N2
exp

(
−1

2
(Hqk)

TQ−1k (Hqk)

)
,

=
1

N2
exp

(
qT
kD2qk

)
,

where D2 = 1
2

(
−HTQ−1k H

)
. Since Qk is a positive

definite matrix (as required by a Gaussian), D2 is a negative
definite matrix. As a result, we obtain an important result:
p(zk|qk) is an unnormalized Bingham distribution in qk.

Assuming the measurements are all independent of each
other, the updated state given the current state estimate and
measurement can be obtained by applying Bayes rule

p(qk|zk) ∝ p(qk)p(zk|qk)

∝ 1

N1
exp

(
qT
kD1qk

) 1

N2
exp

(
qT
kD2qk

)
(16)

∝ exp
(
qT
kMkZkM

T
k qk

)
. (17)

And thus it can be seen that p(qk|zk) is a Bingham distri-
bution, where MkZkM

T
k is obtained from the product of

Binghams as shown in Eq. 4. As mentioned in Sec. III-B4,
the mode of the distribution qk, is the first column of Mk.

After updating qk, tk is calculated from Eq. 12. The
uncertainty in tk can be calculated as shown in Sec. IV-
C of [29]. Hence, the state is updated once for every pair
of measurements received, until a convergence condition is
reached, or maximum number of updates is reached.

3) Simultaneous Multi-measurement Update: So far we
have considered only the case where the state is updated
once per pair of measurements. However, such an approach
can be inefficient when applied to pose estimation from
stereo cameras or Kinect

TM
. In such applications, one typically

obtains several position measurements at each time instant and
processing the measurements in a pairwise manner can be time
consuming. In order to address this situation, we can rewrite
Eq. 10 as:

Hjq = 0, j = 1, . . . ,m.

Hj has the form as shown in Eq. 11, where av, bv are
obtained from points-pairs constructed by subtracting random
pairs of points or subtracting each point from the centroid
(similar to [14]). Since the measurements are assumed to be
independent, we have

p(zk|qk) =

m∏
j=1

1

N j
2

exp

(
−1
2

(Hjqk)
TQ−1(Hjqk)

)
,

=
1

N3
exp(qT

kD3qk), (18)

where D3 = 1
2

∑
j

(
−HT

j Q
−1Hj

)
and N3 =

∏m
j=1N

j
2 .

Eq. 16 can be rewritten as

p(qk|zk) ∝
1

N1
exp

(
qT
kD1qk

) 1

N3
exp

(
qT
kD3qk

)
∝ exp

(
qT
kMkZkM

T
k qk

)
, (19)

where MkZkM
T
k is obtained from Bingham multiplication.

qk and tk are obtained as shown in Sec. IV-A2.

B. Surface-normal Measurements

In some applications, in addition to position measurements,
surface-normal measurements may also be available [28]. The
following equation relates the surface-normals in the two
frames,

na
i = Rnb

i , i = 1, . . . , l

⇒ña
i = q̃ � ñb

i � q̃∗

⇒ña
i � q̃ = q̃ � ñb

i

⇒Giq = 0, where

Gi =

[
0 −(na

i − nb
i )

T

(na
i − nb

i ) (na
i + nb

i )
×

]
,

where na
i are surface-normals in CAD-model frame and nb

i are
surface-normals in the sensor frame. Similar to the derivation
in the case of position measurements (see Eq. 18), we obtain,

p(zk|qk) =
1

N4
exp(qT

kD4qk), (20)

where D4 = 1
2

∑
i

(
−GT

i S
−1
k Gi

)
+ 1

2

∑
j

(
−HT

j Q
−1Hj

)
,

Sk is the measurement uncertainty of the pseudo-
measurement. Thus, we have

p(qk|zk) ∝
1

N1
exp(qT

kD1qk)
1

N4
exp(qT

kD4qk),

∝ exp(qT
kMkZkM

T
k qk).

V. RESULTS

In this section, we consider two scenarios for using the
Bingham distribution-based linear filter– 1) known corre-
spondence and 2) unknown correspondence. Without loss of
generality, we assume that there is no prior information about
the pose and for all the experiments we choose the following
values, M0 = I4×4, Z0 = diag(0, 1, 1, 1) × 10−300 1,
which represents an uninformative prior with high initial
uncertainty. The measurements are modeled according to a
Gaussian distribution with 0 mean and standard deviation of
0.2 mm. We restrict the maximum number of state updates to
100.

110−300 is the smallest positive normalized floating-point number in
IEEE R© double precision.



A. Known Correspondence

In this section, we assume that the correspondence between
points ai ∈ R3 and bi ∈ R3 are known, and estimate the
pose between the frames that these two point sets lie in. The
coordinates of the data set ai is produced by drawing points
uniformly in the interval [ -250 mm, 250 mm]. To create the
noiseless data set bi, a random transformation is applied to ai.
This transformation is generated by uniformly drawing the
rotational and translational parameters in the intervals [−90◦,
90◦] and [−90 mm, 90 mm], respectively. In Experiment 1,
no noise is added to bi. In Experiment 2 and Experiment 3,
a noise uniformly drawn from [-2 mm, 2 mm] and [-10 mm,
10 mm] respectively, is added to each coordinate of bi. Next,
the linear Bingham filter (BF) is used to estimate the pose.

TABLE I

RMS (mm) RMS (mm) RMS (mm)
(Expt. 1) (Expt. 2) (Expt. 3)

BF 0.00 2.29 12.12
DQF 6.14 7.70 70.99
UKF 2.67 4.91 12.25
EKF 94.65 21.97 56.52

This procedure is repeated 500 times with different datasets
and different transformation that are randomly generated. The
results are compared with dual quaternion filter (DQF) [29],
UKF [21] and EKF [22]. Table I shows the RMS errors for
all the filtering methods considered 2.

Fig. 3. Histogram shows the RMS errors for the Bingham filter (BF), dual
quaternion filter (DQF), unscented Kalman filter (UKF) and extended Kalman
filter (EKF). The results shown are for Expt. 3, where the sensed points have
a noise uniformly drawn from [-10 mm 10 mm]. The BF is most accurate
with an average RMS error of 12.12 mm.

Fig. 3 shows the histogram of errors for Expt. 3. For Expt. 3,
the average run time for the BF is 0.05s, compared to 0.04s
of DQF, 2.23s of UKF and 0.10s of EKF. The BF always
estimates the pose with the lowest RMS error. The RMS error
of UKF is small, but larger than the BF and it takes much
longer to estimate (≈50 times slower). DQF and EKF often
get traped in local minima, which has also been noted earlier in
[21, 27]. The performance of EKF and DQF can be improved

2All the calculation are carried out using MATLAB R2015a software from
MathWorks, running on a ThinkPad T450s computer with 8 GB RAM and
intel i7 processor.

by adopting an approach similar to [27], but the estimation
time would also increase.

The BF provides accurate estimates because the filter is
defined in the true space of the pose parameters. DQF is
also a linear filter, but it performances poorly when the state
uncertainty is high. The BF is also faster than other EKF and
UKF as it is a linear filter with no Jacobian or sigma point
computations.

1) Real-world Example: Registering Camera and Robot
Frame: Fig. 4 shows an arm of a da Vinci R© surgical robot
(Intuitive Surgical Inc., Mountain View, CA) mounted on a
table, and a stereo camera (ELP-1MP2CAM001 Dual Lens)
mounted on a rigid stand. The relative pose between the
robot’s frame and the camera’s frame is fixed, and needs to be
estimated. To estimate this pose, the robot is telemanipulated
in arbitrary paths and the location of tip of the robot ai is
computed in the camera frame by segmenting the tip from the
stereo image and estimating its center. The position of the tip
in the robot frame, bi is obtained from the kinematics of the
robot. The pose between the points ai and bi can be obtained
as shown in Sec. V-A.

Fig. 4. A spherical tool tip is attached to the daVinci robot. The tip is
tracked using a stereo camera, which is held in a fixed position.As the robot is
telemanipulated, the spherical tool-tip is tracked using the stereo camera, and
the relative pose between the camera frame and the robot frame is estimated.

Table II shows the pose as estimated by our Bingham filter-
ing approach using pairwise updates, using 20 simultaneous
measurements per update (abbreviated as BFM in the Table)
as well as by Horn’s method. Fig. 5 shows the RMS error

TABLE II

x y z θx θy θz Time RMS
(mm) (mm) (mm) (rad) (rad) (rad) (ms) (mm)

BF 28.91 -128.91 250.45 171.49 15.05 -144.76 25.8 8.93
BFM 6.27 -143.76 269.32 174.40 5.52 -139.25 2.1 5.91
Horn 2.66 -136.25 265.25 173.59 4.81 -141.75 56.8 4.88

versus number of measurements used. The BFM takes 40
measurements to converge as opposed to the BF and Horn’s
method, which take 90 measurements. The concentration ma-
trix of the Bingham filter, Z, provides the uncertainty in the
state estimate, which serves as an indication for convergence
of the state. Upon convergence, no more measurements need
to be collected. There exists no such mechanism to indicate
convergence in Horn’s method. Hence Horn’s method needs to
be run repeatedly with all the measurements collected thus far.



Fig. 5. Bingham filter using 20 simultaneous measurements per update
(BFM) converges at 40 measurements. In comparison, Horn’s method and
Bingham filter with pairwise update (BF), both take ≈ 90 measurements to
converge.

As a result the total run time till convergence of the BF and
BFM is much lower than Horn’s method. The RMS error of
the BF is higher than the BFM, because multiple simultaneous
measurements, help smooth out the effect of the noise in the
position measurements.

B. Unknown Correspondence

In this section we assume that the points ai and surface-
normals na

i are the vertices and normals respectively, of a
triangulated mesh. Fig. 6 shows the triangulated mesh in the
shape of a bunny [31], which has 86,632 triangles.

Fig. 6. (a) Triangulated mesh of Stanford bunny [31] is shown in green. Blue
arrows represent initial location and red arrows represent estimated location
of points and surface-normals. (b) Zoomed up view shows that the estimated
location of points accurately rests on the triangulated mesh and the estimated
direction of the surface-normals aligns well with the local surface normal.
The Bingham filter takes 1.4s in MATLAB and 0.08s in C++ to estimate the
pose.

We randomly pick 5000 points from the triangulated mesh
and to each coordinate of the points, add a noise uniformly
drawn from [-2 mm, 2 mm]. For each (bi,n

b
i ), the corre-

spondence is obtained by finding the closest point-normal pair
(ai,n

a
i ) on the triangulated mesh. We estimate the pose using

the BF with simultaneous multi-measurements as described

Fig. 7. Plot shows RMS error upon convergence versus number of
simultaneous measurements used. The more the number of simultaneous
measurements used, the lower is the RMS error.

in Sec. IV-A3. Fig. 7 shows the RMS error vs number of
simultaneous measurements used. Update based on one pair
of measurements results in a local optimum (RMS error is
≈ 70 mm as shown in Fig. 7). However, the performance
drastically improves when > 10 simultaneous measurements
are used.

TABLE III

x y z θx θy θz Time RMS
(mm) (mm) (mm) (deg) (deg) (deg) (s) (mm)

Actual 44.83 -50.45 7.15 -12.01 -21.49 -28.14 – –
DQF 42.02 -53.95 6.63 -13.18 -19.86 -30.69 13.02 2.02
ICP 44.52 -49.16 6.32 -9.05 -19.11 -30.40 77.83 2.04
BFM 44.45 -50.38 7.65 -12.14 -21.75 -28.10 1.06 0.54
BFN 44.23 -50.44 7.21 -12.08 -21.23 -28.21 1.43 0.53

Fig. 8. Plot shows the RMS error in the pose vs number of state updates as
estimated by the Bingham filter using 20 simultaneous position and normal
measurements in each update. The estimate converges around 40 iterations.

The penultimate row of Table III shows the pose parame-
ters as estimated by the BF using 20 simultaneous position
measurements (This experiment is abbreviated as BFM). We
also estimate the pose using 20 simultaneous surface-normal
and position measurements (abbreviated as BFN in Table III).
The RMS error for the BFN is slightly better than the BFM.
However, the time taken by the BFN is slightly higher because
surface-normals are used in addition to point locations when
finding the correspondence. Fig. 6(a) shows the initial position
of the surface-normals and point locations with blue arrows
and the BFN estimated surface-normals and point locations
with red arrow. The zoomed up image Fig. 6(b) shows that
our approach accurately registers the points as well as aligns



Fig. 9. (a), (b), are two RGB-D images obtained from Kinect
TM

, with some
overlapping region.(c) The point cloud model estimated by aligning the point
clouds in (a) and (b) using the Bingham filter. The Bingham filter takes 0.21s
to estimate the pose with an RMS error of 4.4cm, as opposed to ICP, which
takes 0.46s with an RMS error of 6cm.

the surface-normals to the triangulated mesh. Table III also
shows the pose parameters as estimated by ICP [1] and a
modified version of DQF [27] . Our approach is orders of
magnitude faster and more accurate than both these methods.
Fig. 8 shows the RMS error at the end of each update step
for BFN. The RMS error reduces to < 0.6mm at around 40
state updates. To obtain the same accuracy as DQF and ICP
(≈ 2mm), both BFM and BFN take ≈ 30 state updates, which
takes 0.28s.

1) Real-world Example– Point-cloud Stitching: Stereo
imaging devices such as the Microsoft Kinect

TM
offer colored

point cloud data (RGB-D: color and depth data), which is
generated using a structured light based depth sensor. The
Kinect

TM
is widely used in robot navigation [16] and object

manipulation [5]. In this work, we align a pair of point cloud
data obtained from the Kinect

TM
, using the Bingham filter,

to develop a point-cloud model of the environment. It is
assumed that there is some overlap between the two point
clouds. We demonstrate our approach on RGB-D images taken
from the ‘Freiburg1-Teddy’ dataset of [30]. Fig. 9(a), (b)
shows the snapshots of the images. Fig. 9(d) shows the final
model of the room as generated by our approach. We use 20
simultaneous measurements and the same initial conditions
as in the previous cases. Our approach takes ≈ 0.21s for
estimating pose, which is twice as fast as ICP which takes
≈ 0.46s. In order to improve the speed we have implemented
a C++ version of the Bingham filter, which takes only ≈ 2

ms 3. The RMS error of our approach is 4.4cm, which is of
the order of the accuracy of the sensor itself [16] and is better
than the RMS error of ICP, 6cm.

VI. CONCLUSION AND DISCUSSIONS

In this work, a Bingham distribution-based linear filter
(BF) was developed for online pose estimation. Bingham
distribution captures the bimodal nature as well as unit norm
constraint of the rotation quaternion. By adapting the linear
measurement model developed by Srivatsan et. al. [29], a
linear Bingham filter has been developed that updates the
pose based on a pair of position measurements. Further the
filter is extended to process surface-normal as well as multiple
simultaneous measurements, for applications such as image
registration and point-cloud stitching.

It has been shown through simulations and experiments
that the BF is capable accurate pose estimation with less
computation time compared to state-of-the-art methods. It is
empirically observed that using multiple simultaneous mea-
surements per update helps avoid local optima, when the
correspondences are unknown. We also observe that position
measurements reduce the RMS error to such an extent that
using surface-normal measurements in addition offers very
little improvement.

One drawback of our approach, as with most filtering
based approaches, is that the estimate can be trapped in a
local minima. This problem is more prevalent when point
correspondences are unknown. Using a high initial uncer-
tainty and more number of simultaneous measurements helps
alleviate this problem. However, in some applications only
pairs of measurements may be available per update, and the
correspondences may be unknown (ex. robotic probing [28]).
In such situations, better correspondences using a probabilistic
metric as described in [2], can improve the estimate. Another
approach to resolve this issue is to use a global optimizer for
filtering-based methods such as [27].

In the future we plan to use the estimate of the concentration
matrix of the Bingham distribution to guide where to collect
the next set of measurements to improve the registration.
While we limit ourselves to static pose estimation in this work,
the approach can be easily adapted for dynamic pose estima-
tion. If the sensor provides multiple position measurements
at a high frequency rate, then a series of static online pose
estimation can be performed to track the pose. Depending
on the application, one could also develop a process model
to capture the dynamics, and utilize an unscented Bingham
filter [9] if this model is nonlinear.
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