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Abstract—The advent of sensor arrays providing tactile feed-
back with high spatial and temporal resolution asks for new
control strategies to exploit this important and valuable sensory
channel for grasping and manipulation tasks.

In this paper, we introduce a control framework to realize a
whole set of tactile servoing tasks, i.e. control tasks that intend
to realize a specific tactile interaction pattern. This includes such
simple tasks like tracking a touched object, maintaining both
contact location and contact force, as well as more elaborate
tasks like tracking an object’s pose or tactile object exploration.

Exploiting methods known from image processing, we intro-
duce robust feature extraction methods to estimate the 2D contact
position, the contact force, and the orientation of an object edge
being in contact to the sensor. The flexible control framework
allows us to adapt the PID-type controller to a large range of
different tasks by specification of a projection matrix toggling
certain control components on and off. We demonstrate and
evaluate the capabilities of the proposed control framework in
a series of experiments employing a 16×16 tactile sensor array
attached to a Kuka LWR as a large fingertip.

I. INTRODUCTION

The sense of touch allows humans and other animals to
perform coordinated and efficient interactions within their
environment. An early experiment demonstrated the impor-
tance of tactile feedback for manual interactions: without the
sense of touch, subjects had severe difficulties maintaining
a stable grasp or performing a complex action [11, 10]. In
recent years, the resolution and sensitivity of tactile sensors
only sufficed for basic force feedback during blind grasping
[4]. However, tactile sensor arrays providing high spatial and
temporal resolution as well as high sensitivity [8, 21] emerged
recently that will allow for more advanced control methods
involving tactile feedback.

Such control approaches – which we denote as tactile
servoing in accordance to corresponding control approaches
involving direct visual feedback – require advanced tactile
perception methods and their integration into control programs
for direct robot control. Tactile servoing includes important
tasks like sliding a finger tip across an object’s surface,
following specific surface structures like ridges, searching for
distinctive tactile patterns, or exploring the object shape by
groping. Most of these tasks are essential for both in-hand
object manipulation [13], and haptic object identification [16].

Drawing on ideas for visual servoing and applying image
processing algorithms to the tactile force image provided by
modern tactile sensor arrays, it is possible to extract basic
tactile features in real time and employ them for robot control.
The challenging mission is to find generic features, which
not only work in specific hard-coded control scenarios on a
specific type of tactile sensor, but that generalize to a rich

set of control tasks and sensor types. Raibert’s [17] hybrid
position and force control approach provides the basis to
explore unknown environments and we will draw on his ideas.

In this paper, we propose a unified and extensible tactile
servoing framework that can cover many tactile exploration
tasks. The control approach can be easily adapted to various
tasks by defining a projection matrix that determines which of
the proposed control primitives should be utilized. Addition
of further control primitives is easily possible, when new
tactile features are developed. The proposed framework easily
integrates with classical robot velocity and position control,
thus facilitating integration of further feedback modalities like
vision or proprioceptive sensing. In summary, the proposed
tactile servoing framework is a practical toolkit to realize
complex manipulation and exploration tasks as discussed in
[22, 5, 1].

The remaining paper is organized as follows: In sec. II we
present the state of the art of tactile-feedback-based control. In
sec. III we propose some basic tactile features extracted from
the tactile sensor image (contact position, object orientation
and contact force) that are utilized in the tactile servoing
framework introduced in sec. IV. Finally, in sec. V we evaluate
the control results in a set of five different servoing tasks,
which are also shown in the accompanying video [12].

II. STATE OF THE ART

3D object exploration based on tactile feedback is an im-
portant research issue in the robotics community because this
sensor modality provides more accurate position information
than visual sensors and it is the most important sensor modality
to reliably assess object properties like roughness, softness,
friction, or mass [25].

The research question most related to our work is how
to design the exploration process to drive a tactile-sensitive
fingertip across an object’s surface. In the context of un-
known object recognition based on haptic (i.e. tactile and
proprioceptive) feedback, Dario et. al [5] proposed a multi-
stage recognition approach. The authors divided the whole
exploration and recognition process into five stages: approach,
shape, texture, hardness and thermal. They claimed that every
stage can be realized by a specific subroutine. Allen et. al
[1] recognize the object by manipulating it. They propose a
hierachical recognition process: first, they grasp the object with
a multi-fingered robot hand in order to roughly estimate the
shape and pose of the object. Subsequently, the fingers can
be employed to explore the object’s surface. Although their
work did not focus on tactile servoing, they derive some task
requirements for a tactile servoing controller: the ability to



track linear features, to explore an unknown object’s surface
and to track a given contact location.

Considering the sensor feedback, a tactile sensor image can
provide rapid and accurate information to the robot control
system. For example, [1] and [8] claimed that they can extract
the contact point location, object orientation and contact force
information by analyzing the image moments in real time,
i.e. within the control cycle of the robot. Another approach
to extract the orientation of an object edge w.r.t. the sensor
surface is to apply a Hough transform to fit a line to the sensor
image [15, 2] and subsequently compute the orientation of this
line w.r.t. the sensor’s coordinate frame.

Chen [3] proposed to employ elasticity theory to derive
contact models between several geometric object primitives
and the planar tactile sensor surface. Their approach can also
model the relation of the contact geometry and expected tactile
image moments. Because their method is based on a physical
model, there are many constraints to obey for their approach.
We follow the approach proposed by Ho et. al [8], using image
moments to derive the contact geometry, in order to extract
tactile image features.

Zhang et. al [26] extended the work of Chen [3] and
proposed a first tactile servoing framework. They draw on
elasticity theory to formulate a tactile sensor model and the
inverse model. With this theory, it is possible to predict the
sensor image from the known contact geometry. Their closed-
form solution to compute tactile features is highly efficient.
We extend their work in the following two aspects: First, we
formulate a flexible set of controller primitives, which can be
combined to realize a multitude of various tactile servoing
tasks. Second, our framework integrates classical end-effector
servoing and tactile servoing, thus providing an easy-to-use
interface to compose complex control strategies to realize
grasping, manipulation and object exploration tasks.

III. FEATURE EXTRACTION FROM TACTILE IMAGES

Many tactile sensor designs propose an array of tactile
sensing elements (tactels) providing only normal force infor-
mation [21, 18, 24] for each element. However, sometimes it
is also possible to compute contact force directions from this
information [24]. Most array structures also have a reasonable
spatial resolution to allow for an explicit control of the tactile
force pattern sensed in a contact region. As a consequence, in
our control framework, we assume the availability of a tactile
sensor array providing a tactile image of force values measured
by individual tactels.

The sensor employed in our experiments provides an array
of 16×16 tactels with a spacing of 5mm in each direction.
It is tuned towards high frame rates (up to 1.9 kHz), ren-
dering a use for real-time robot control feasible [21]. This
sensor exploits the piezo-resistive sensing principle, measuring
changes in resistance of a conductive foam due to an applied
force. The analog measurement of each individual tactel is
converted to a 12bit digital value covering a pressure range

Fig. 1: Sensor characteristics of all 256 tactels (and an individ-
ual one – red solid line) as acquired using a 3-axis calibration
bench and an industrial strain gauge providing ground-truth
force measurements with an accuracy of ±2.5mN.

of 0.1–10 kPa.1 Due to varying local conductive properties of
the foam, every tactel has a distinguished, squashed and noisy
sensor characteristics as shown in Fig. 1. To obtain a coarse
force calibration, we inverted the characteristic measurement
function of each individual tactel in its linear range.1

The intended tactile servoing tasks aim for controlling a)
the contact position on the fingertip, b) the contact force, and
c) the orientation of an object edge relative to the sensor array.
To this end, we need feature extraction methods providing the
current value of these control variables.

As a first processing step we need to identify the contact
region on the sensor, which typically extends over a larger
image region due to the softness of the sensor foam. To
this end, we employ connected component analysis [23], well
known from image processing, to extract all connected regions
in the binarized tactile image and choose the largest one as the
considered contact region R – neglecting all smaller regions as
originating from noise or spurious contacts. The binarization
threshold was chosen rather small, just above the noise level
to consider as much tactile information as possible.

Subsequently, we compute the overall contact (normal)
force f as the sum of forces fij within the contact region and
the contact position c as the force-weighted center of pressure
(COP) of R:

f =
∑
ij∈R

fij c = f−1
∑
ij∈R

fijcij , (1)

where cij are the discrete coordinates of the tactels on the
sensor surface. Due to the averaging effect from multiple
tactels composing a contact region, we obtain a sub-tactel
resolution for the contact position as can be seen from Fig. 2.

1The sensor’s sensitivity and force range can be adjusted to the task. Here,
we have chosen the characteristics to provide a linear range from 0.1–1 kPa.
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Fig. 2: Computed contact position (COP) when moving a
2mm-diameter probe tip from one to the other end of a single
tactel. Due to the weighted averaging between different tactel
locations (Eq. 1), we yield a spatial accuracy of ca. 0.5mm
despite the much larger tactel size of 5mm. Note that, due to
the specific shape of the sensor electrode, there is a small bias
towards the center of the tactel (located at 2.5mm).

Usually, we want to control the contact pressure instead of
the overall contact force. Considering manipulation of fragile
objects, like an egg, it is the local pressure that should be
limited to not damage the object. To obtain a pressure value,
we normalize the overall measured force by the size of the
contact region (measured as the number of pixels in R):

p =
f

|R|
(2)

In our experiments we target a pressure value of p=1, which
roughly corresponds to 2 kPa or a force of 2 N spread over
an area of 40 pixels.

For extraction of the orientation angle of a line-shaped
contact region originating from an object edge (cf. Fig. 3)
we compared two methods: a) line detection with Hough
transform [6] and b) image moment analysis [8]. While the
former method fits a line segment into a gray-scale image, the
latter one extracts the major principal component of the contact
region. In order to quantitatively compare the accuracy of
both methods for our application, we pressed a pen-like object
onto the sensor surface, thus stimulating a line-shaped contact
region. A comparison of the orientation angle computed with
the two mentioned methods to the value actually measured
with a protractor at various object poses is shown in Fig. 4
revealing a smaller error for the PCA approach.

All image processing was realized employing the Image
Component Library [7], providing real-time performance for
all required methods.

IV. TACTILE SERVOING FRAMEWORK

Our control framework for tactile servoing builds on top
of the control basis framework (CBF) originally developed in
the lab of Prof. Grupen [9]. This framework realizes resolved
motion rate control, mapping updates of task control variables

Fig. 3: Raw 16×16 tactile image (left) and extracted contact
region (right) when pressing a pen onto the sensor area. The
extracted line feature is visualized as well (green: Hough
transform, red: image moment analysis).
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Fig. 4: Comparison of the test results for the Hough and
image moment method. It can be seen that the image moment
produced a lower error for the estimation of line angle than
the Hough method.

to joint angle updates of the robot. The main idea of the tactile
servoing framework proposed in this paper is to define an
inverted task Jacobian J−1s mapping errors in the tactile feature
vector to a suitable Cartesian velocity twist Vs of the sensor
frame. Subsequently we employ the powerful motion control
framework of CBF [20] to realize the computed sensor frame
motion with appropriate joint motions. A schematic scenario
setup with all involved coordinate frames is depicted in Fig. 5.
Og denotes the global coordinate frame that is fixed in the
robot base, Oe denotes the end-effector frame, and Os denotes
the sensor frame that is fixed relative to the tactile sensor array
shown in blue color.

The proposed tactile servoing control framework aims for
realizing sliding and rolling motion about the contact point
while maintaining a specified normal contact force during
manipulation. However, dependent on the actual task at hand,
specific motion components can be explicitly switched off.
Additionally to this tactile-driven robot motion, an external
task planner can provide a motion component Vext

s , which
is again a twist expressed in terms of the sensor frame Os.
This motion component allows to realize externally controlled
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Fig. 5: Definition of coordinate frames

tactile object exploration, e.g. to follow an object edge or to
run the sensor over the whole object surface as detailed in the
experimental section V.

Please note, that – as a side-effect – the robot’s forward
kinematics Tgs = Tge · Tes mapping points from the sensor
to the global coordinate frame, can be used to determine the
spatial location of a contact region w.r.t. the global frame. In
this sense, the robot can act like a ruler to measure the path
length while sliding over an object’s surface.

The overall control scheme of our proposed controller is
depicted in Fig. 6. The control cycle starts by computing
the deviation of the current tactile feature vector f from the
targeted one. This error is fed into PID-type controllers, acting
independently on all feature-error components. The resulting
control variable u is a (non-uniformly) scaled version of
∆f . Please notice, that for effective force control a non-zero
integral component is required to compensate for static errors
caused by a pure P-controller. Additionally, the derivative
component is necessary to suppress undesired oscillations.

Subsequently, we compute a sensor motion Vtact
s aiming to

reduce the feature error. This is realized with a fixed, task-
independent, inverted Jacobian matrix J−1s and subsequent
application of a task-dependent projector matrix P selecting
certain twist-components for control and neglecting others.
P is a simple 6×6 diagonal matrix, where ones and zeros

indicate, that the corresponding component is or is not used for
control. Summarizing the feedback-part of the tactile servoing
controller is determined by the following equation:

Vtact
s = P · J−1s ·

(
KP ·∆f(t) +KI ·

∫
∆f(t)dt

+KD · (∆f(t)−∆f(t− 1))
) (3)

Here Vs = [vs,ωs] denotes the 6-dimensional twist vector
composed of linear and angular velocity components vs, ωs.
KP,I,D denote diagonal matrices of PID-controller gains and
∆f(t) = [∆xs,∆ys,∆f,∆α] denotes the deviation of the
feature vector composed of the positional error ∆xs,∆ys, the
normal force error ∆f , and the angular error ∆α of the line
orientation. Note, that the latter one is measured modulo π in
order to obtain angular errors in the range (−π2 ,

π
2 ] and thus

circumventing singularities due to their circular nature. The
rotational symmetry allows to restrict the errors to this range
instead of (−π, π].

Finally, the twists originating from the tactile feedback-loop
and the external task planner are superimposed and fed to the
inverse kinematics module of the control basis framework. To
this end, the twist Vs expressed in terms of the sensor frame
Os needs to be transformed to the global frame Og , which is
realized by the adjoint matrix derived from the current forward
kinematics Tgs = Tge · Tes = (Rgs,pgs):

AdTgs =

(
Rgs p̂gsRgs
0 Rgs

)
(4)

At the core of the tactile-feedback controller is the inverse
Jacobian that maps feature deviations into a motion twist of
the tactile sensor array:

Vtact
s = J−1s ·∆f =


1

1
1

0 1
1 0

1

 ·


∆xs
∆ys
∆f
∆α

 (5)

This matrix can be easily determined in the sensor coordi-
nate frame Os: Positional deviations are simply mapped into
corrective tangential motions in the x-y-plane of the sensor.



Fig. 7: Experimental setup: tactile sensor mounted on LWR.

Normal force errors are mapped into a corrective translational
motion along the z-axis of the sensor frame, which is normal
to the sensor plane, pointing towards the object. These linear
motion components are determined by the first three rows of
J−1s . The rotational error ∆α is mapped onto a rotational
velocity around the z-axis (last row). The motion components
corresponding to the fourth and fifth row of the inverted
Jacobian realize a rolling motion of the sensor. These are
triggered by positional deviations again. Thus, an error ∆xs
is not only reduced by an appropriate tangential linear motion
of the sensor, but also by a rolling motion around the y-axis
of the sensor, thus also moving the COP of the contact region
closer towards its target location.

The task-dependent projector matrices P can be used to
toggle these individual twist components on and off. For
example, if contact position control is desired, one will choose
P = diag(1, 1, 0, 0, 0, 0). When additionally force control is
required, the third diagonal entry should be set to 1 too. In
order to enable or disable the orientation tracking of an object
edge, you will set the last diagonal entry to 1 or 0 resp. Finally,
the fourth and fifth entries in the diagonal projector matrix
determine, whether rolling is enabled or not. In the following
section, we will discuss several application scenarios of the
proposed tactile-servoing framework.

V. EXPERIMENTAL EVALUATION

As shown in Fig. 7, we mounted the tactile sensor pad as a
large fingertip to a 7-dof Kuka lightweight robot arm operated
in joint-space compliance mode using a stiffness parameter
of 200 Nm/rad and a damping parameter of 0.2 Nm·s/rad.
The control basis framework maps Cartesian-space twists into
joint-angle velocities, thus changing the equilibrium posture of
the robot controller. The tactile sensor pad provides an array of
16×16 tactels measuring contact forces with 12bits resolution
[21]. The sampling frequency of the tactile sensor as well as
the control cycle frequency of the robot arm are set to 250Hz.
We use manually tuned PID parameters for the tactile servoing
controller.

All the experiments discussed in the following are also
shown in the accompanying video [12] and follow the same
course: Initially the robot is moved to its working area, holding
this posture until object contact is established. As soon as a
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Fig. 8: Normal force control on objects of different stiffnesses.
Tracking results get close to the sensor’s noise level of 0.04.

pressure threshold is exceeded, the robot switches to a specific,
previously determined tactile servoing task.

In order to reduce the noisiness of the feature signals, we
apply a smoothing filter to both the force/pressure feature and
the line orientation feature α. To this end, we average the ten
most recent measurements, i.e. in a time window of 40ms.
The position feature is smooth enough due to the averaging
of Eq. 1.

A. Tracking point contacts

Contact point tracking has an important application for
multi-finger grasping and manipulation. In both cases, fingers
need to maintain object contact with a given contact force and
they should ensure, that the contact location remains on the
fingertip area – optimally in its center – to avoid slipping off.

1) Normal force control: In the first experiment we only
control the normal force applied to the object. Accordingly,
the task-dependent projector matrix has the form P =
diag(0, 0, 1, 0, 0, 0). As the quality of force control heavily
depends on the stiffness of objects (softer objects allow for a
larger motion range given a fixed force range) we evaluated the
control performance on various objects of different stiffnesses:
a rigid pen, a toy box from rigid foam, and a soft ball. The
results for maintaining a desired pressure level of p=1 are
shown in Fig. 8. As expected, stiffer objects take longer to
converge to a stable tracking result (response time) and exhibit
stronger force oscillations given similar deflections. However,
in all cases the desired force level will eventually be well
maintained as shown in Tab. I. The steady state error and
standard deviation are computed from the time series starting
after the response time and lasting until 20s. All values are
obtained by averaging over 20 trials.

2) Contact position control: In the second experiment, we
focus on contact position tracking and neglect the applied
normal force. The goal is to maintain the COP of the contact
region at the center of the tactile sensor frame. Accordingly,
the projection matrix equals P = diag(1, 1, 0, 0, 0, 0). The



TABLE I: Normal force control: tracking results

object steady state error standard deviation response time

rigid pen 0.0032 0.039 2.5s
toy box 0.0026 0.039 2s
soft ball 0.0010 0.043 2s
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Fig. 9: Contact position control; above: position error; below:
normal force evolution

experimental results are shown in Fig. 9. As can be seen from
the top sub-figure an initial position offset is corrected within
less than 1s. The steady state error and response time are
summarized in Tab. II. As can be seen from bottom sub-figure
the normal force applied in this experiment evolves randomly
as it is not controlled. Note, that a large normal force – due
to friction – will also cause large tangential forces, rendering
the sliding motion more difficult. Hence, normal force control
should be generally enabled.

3) Simultaneous position and force control: Finally, we
combine both controllers to evaluate the more realistic scenario
of contact location tracking while maintaining a given small
contact force. The (superimposed) projector matrix becomes
P = diag(1, 1, 1, 0, 0, 0). The evolution of the errors in
contact position and force are shown in Fig. 10. While we
obtain similar position tracking results as before (upper sub-
figure), we observe some high-frequency oscillations along the
normal axis initially (lower sub-figure). This is due to tangen-
tial friction occurring with the sliding motion. Quantitative
results are summarized in Tab. III.

B. Track contact point and increase contact area by rolling

The fourth and fifth row of the task Jacobian (Eq. 3) provide
another mode of operation to compensate for positional errors

TABLE II: Contact position control: tracking results

Axis steady state error standard deviation response time

X -0.0027 pixel 0.0440 pixel 2s
Y -0.0406 pixel 0.0509 pixel 2s
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Fig. 10: Hybrid position and force control.

TABLE III: Hybrid position/force control: tracking results

Axis steady state error standard deviation response time

X 0.0041 pixel 0.1146 pixel 1.8s
Y 0.0082 pixel 0.1158 pixel 1.8s
force -0.0014 0.1335 2s

of the COP: Instead of realizing a translational sliding motion,
this control behavior realizes a rolling motion, thus changing
the contact point both on the tactile sensor and the object’s
surface. While previous approaches to realize rolling employed
complex algorithms to determine the point of revolution and
a corresponding joint-space robot motion [19], the tactile
servoing approach proposed here is conceptually much easier:
a deviation in contact position is simply mapped to a rotational
twist within the tangential plane of the sensor. Because we
do not explicitly compute the point of revolution and do not
know the shape of the object, the normal force will probably
be disturbed due to this motion. However, the normal force
controller, running in parallel, will counteract and maintain a
predefined force level. The employed projector matrix equals
P = diag(1, 1, 1, 1, 1, 0), i.e. simultaneously realizing sliding
and rolling as well as force control.

The resulting rolling motion is visualized in Fig. 11. An
initial positional offset along the y-axis is compensated by
a rolling motion about the sensor’s x-axis (stage S1). When
there is no contact point offset, the rolling motion stops (stage
S2). After 4s the object was displaced yielding a negative
position offset that was compensated by a rolling motion into
the opposite direction (stage S3). This behavior can nicely be
seen in the video [12] as well.

The rolling behavior has the beneficial side-effect of in-
creasing the area of contact between the finger tip and the
object. This is an important capability for grasp stabilization.
Although classical grasp planning considers point contacts
only, a large contact area naturally increases the grasp wrench
space and thus increases the ability to resist to external distur-



Fig. 11: Orientation control of surface normals by rolling

bances. Furthermore, a prerequisite for successful tactile object
exploration will be to maintain a large contact area during
exploration in order to collect as much shape information
about the object as possible.

How this side effect is achieved? Assuming large object and
sensor surfaces, a small contact area typically results from a
badly tilted sensor w.r.t. the object surface. In this situation
the sensor only touches an object edge instead of the whole
surface. This contact is often located off-center on the sensor
array. The corrective rolling motion to move the COP into
the sensor’s center will also reduce the tilting and eventually
result in the desired surface contact. This state also constitutes
a fixed point of the controller dynamics, because the COP will
be in the center of tactile array in this case.

C. Tracking an object edge on the sensor surface

The orientation around the normal axis is controlled using
the orientation angle α of a line in the tactile image emerging
from an object edge on the sensor. For this control task the
last row of the Jacobian matrix is important, resulting in a
projector matrix P = diag(0, 0, 1, 0, 0, 1). The tracking result
for this experiment is qualitatively shown in the video [12]
only. However, the next experiment also employs this subtask
and provides an evaluation in Fig. 12b.

D. Tracking of an unknown cable

The previous experiments illustrated the performance of
the proposed tactile servoing controllers in various scenarios,
neglecting external motion commands Vext

s . However, the aim
of the following two tasks is to illustrate, that we can realize
complex emergent exploration behavior combining the tactile
servoing and some externally provided guidance motion.

In the first experiment, we consider the task of tracking the
unknown shape of a cable lying flat on the table. To this end,
the sensor should be aligned to the local orientation of the
cable, it should maintain the tactile imprint within its sensor
boundaries (optimally in the center), and it should actively
control the contact force. Accordingly we choose a projector

(a) tracking result (blue) superimposed onto scene photo
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Fig. 12: Tracking of an unknown cable on the table

matrix P = diag(1, 1, 1, 0, 0, 1). In order to follow the
cable in space, we additionally impose an external tangential
motion onto the sensor along its y-axis, which coincides with
the current orientation of the cable (if orientation tracking is
successful). Thus Vext

s = [0, 1, 0, 0, 0, 0]t.
Fig. 12a shows a photo of the tracked cable superimposed

with the object shape (blue line) estimated from the forward
kinematics of the robot arm when following the cable with
tactile servoing. The lower subfigures show the evolution of
the normal force and the line orientation error over time.
After some initial oscillations, the robot manages to align the
cable imprint on the sensor with its y-axis. The force error –
targeting a feature value of p=1 – is relatively high initially
but the force eventually converges towards the desired value.

E. Exploring the shape of an unknown object

The second experiment illustrating the power of the pro-
posed tactile servoing framework, aims at tactile object explo-
ration: The sensor should slide over the unknown surface of the
object in order to accumulate a dense shape model. Lacking
an appropriate control framework, previous work acquired the
corresponding tactile information by repeated establishment
and breaking of object contact [14].

To realize this complex task, we decompose it into several
phases: after establishing contact to the object, the robot
maximizes the sensed contact area and aligns its y-axis with
the major axis of the contact region applying the control
schemes of sec. V-B and sec. V-C simultaneously.



Subsequently, by imposing a tangential motion along the
sensor’s x-axis (orthogonal to the major axis of contact
region), we induce the exploration motion. The simultane-
ously running tactile servoing controller maintains the optimal
orientation and position of the tactile sensor on the object’s
surface by generating appropriate sliding and rolling motions.
This task exploits all tactile servoing behaviors employing the
projector matrix P = 1. As a result the object exploration
behavior emerges automatically.

Similarly we can explore the object along the other direc-
tion, if we follow the contact’s major axis instead (cf. previous
task in sec. V-D). In the accompanying video [12] we change
the direction of the external guidance motion Vext

s in order to
realize a scanning of the object into both directions.

VI. CONCLUSION

The tactile servoing control framework proposed in this
paper allows to realize a large range of tactile tracking and
exploration tasks. To this end, it’s only necessary to choose
the task-specific projector matrix P choosing which tactile
servoing primitives (sliding, rolling, turning, force control)
should be applied.

The integration of an externally driven guidance motion
Vext
s allows to realize complex exploratory behavior. In the

shown example tasks, we only used very simple, static guid-
ance motions. However, if those guidance motions are com-
puted from tactile feedback as well, one can easily realize even
more complex exploration behavior, e.g. to drive the tactile
sensor towards interesting spots on the object’s surface, like
ridges, edges or corners. In future work, we will extend the
feature base and develop appropriate control algorithms into
this direction.
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