On Provably Safe Obstacle Avoidance for
Autonomous Robotic Ground Vehicles

Stefan Mitsch, Khalil Ghorbal and André Platzer
Carnegie Mellon University, Computer Science Department
5000 Forbes Avenue, Pittsburgh PA 15213, USA,
Email: {smitsch,kghorbal,aplatzer} @cs.cmu.edu,
WWW home page: http://www.symbolaris.com

Abstract—Nowadays, robots interact more frequently with a
dynamic environment outside limited manufacturing sites and in
close proximity with humans. Thus, safety of motion and obstacle
avoidance are vital safety features of such robots. We formally
study two safety properties of avoiding both stationary and mov-
ing obstacles: (i) passive safety, which ensures that no collisions
can happen while the robot moves, and (ii) the stronger passive
Jriendly safety in which the robot further maintains sufficient
maneuvering distance for obstacles to avoid collision as well. We
use hybrid system models and theorem proving techniques that
describe and formally verify the robot’s discrete control decisions
along with its continuous, physical motion. Moreover, we formally
prove that safety can still be guaranteed despite location and
actuator uncertainty.

I. INTRODUCTION

With the increased introduction of autonomous robotic
ground vehicles as consumer products—such as autonomous
household appliances [7] or driverless cars on regular Califor-
nian roads'|—we face an increased need for ensuring safety not
only for the sake of the consumer, but also the manufacturer.
Since those robots are designed for environments that occupy
stationary as well as moving obstacles, motion safety and
obstacle avoidance are vital safety features for such robots
(3 221 250 27].

In this paper, we prove safety for the obstacle avoidance
control algorithm of a robot. One of the conceptual difficulties
is what safety means for an autonomous robot. We would want
it to be collision-free, but that usually requires other vehicles
to be sensible, e. g., not actively try to run into the robot when
it is just stopped in a corner. One way of doing that is to
assume stringent constraints on the behavior of obstacles (see,
e.g., (3, [12]). In this paper, we want to refrain from doing
so and allow arbitrary obstacles with an arbitrary continuous
motion with a known upper bound on their velocity. Then our
robot is safe, intuitively, if no collision can ever happen where
the robot is to blame. The first notion we consider is passive
safety [14]. Passive safety can be guaranteed with minimal
assumptions about obstacles. It requires that the robot does
not actively collide, i.e., if a collision occurs at all then only
while the robot is stopped and the (moving) obstacle ran into
the robot. The difficulty with that notion is that it still allows
the robot to go kamikaze and stop in unsafe places, creating
unavoidable collision situations in which an obstacle has no
control choices left that would prevent a collision. The second
notion we consider is passive friendly safety [14], which aims

for more careful robot decisions that respect the features of
moving obstacles (e.g., their braking capabilities). Thus, a
passive friendly robot not only ensures that it is itself able to
stop before a collision occurs, but it also maintains sufficient
maneuvering room for obstacles to avoid a collision as well.

Motion safety and obstacle avoidance lead to interesting
cognitive robotics questions: how much does the robot have to
know about the goals and constraints of other vehicles so as
not to be considered to blame? In this paper, we successively
construct models and proofs that increase the level of assumed
knowledge and explicitly expressed uncertainty. We start with
(i) passive safety, which assumes a known upper bound on
the velocity of obstacles. Then we extend to (ii) passive
friendly safety for a known lower bound of an obstacle’s
braking power and consider an upper bound on the reaction
time that we allow an obstacle to start collision avoidance
attempts. Note that all our models use symbolic bounds so
they hold for all choices of the bounds. As a result, we can
account for uncertainty in several places (e. g., by instantiating
upper bounds on acceleration or time with values including
uncertainty). We additionally show how further uncertainty that
cannot be attributed to such bounds (in particular location and
actuator uncertainty) can be modeled and verified explicitly.

We use the well-known dynamic window algorithm [9]]
and verify passive safety and passive friendly safety. Unlike
existing work on obstacle avoidance (e. g., [1, 17, [24-26l)), we
use hybrid models and verification techniques that describe
and verify the robot’s discrete control choices along with its
continuous, physical motion. In summary, our contributions are
(1) hybrid models of navigation and obstacle avoidance control
algorithms of robots, and (ii) proofs that they guarantee passive
and passive friendly safety in the presence of stationary and
moving obstacles despite sensor and actuator uncertainty. The
models and proofs of this paper are bundled with KeraeraE]

The paper is organized as follows. In the next section, we
discuss related work on navigation and obstacle avoidance
of robots that focuses on verification. Section recalls
differential dynamic logic that we use as a modeling formalism
for the hybrid dynamics of a robot and the safety constraints. In
Sect. we introduce models of obstacle avoidance control
and physical motion, and prove that they guarantee passive
safety and passive friendly safety with stationary as well as
moving obstacles. We then model uncertainty explicitly and
prove that motion is still safe. Sect. [V] concludes the paper.

! http://www.nytimes.com/2010/10/10/science/10google.html?_r=0

2 http://symbolaris.com/info/Ke' Y maera.html

http://www.nytimes.com/2010/10/10/science/10google.html?_r=0
http://symbolaris.com/info/KeYmaera.html

II. RELATED WORK

Isabelle has recently been used to formally verify that a C
program implements the specification of the dynamic window
algorithm [25]). This is interesting, but the algorithm itself and
its impact on motion of the robot was considered in an informal
pen-and-paper argument only. We, instead, formally verify the
correctness of the dynamic window algorithm using a hybrid
verification technique. Thus, we complement the work in [25]]
in a twofold manner: First, we create hybrid models of the
control and the motion dynamics of the robot and formally
verify correctness of the dynamic window algorithm control
for the combined dynamics. Second, we model stationary as
well as moving obstacles and prove two versions of safety.
These complementary results together present a strong safety
argument from concept (this paper) to implementation [25].

PAsSAvoID [3] is a navigation scheme, which avoids
braking inevitable collision states (1. e., states that regardless of
the robot’s trajectory lead to a collision) to achieve safety in the
presence of moving obstacles. Since PASSAVOID is designed to
operate in completely unknown environments, it ensures that
the robot is at rest when a collision occurs (passive safety).
The motion dynamics of the robot have only been considered
in simulation. We prove the stronger passive friendly safety
using a hybrid verification technique (i.e., algorithm and
motion dynamics), which ensures that the robot does not create
unavoidable collision situations by stopping in unsafe places.

For the purpose of guaranteeing infinite horizon safety,
velocity obstacle sets [27] assume unpredictable behavior for
obstacles with known forward speed and maximum turn rate
(i.e., Dubin’s cars). The authors focus only on the obstacle
behavior; the robot’s motion is explicitly excluded from their
work. We complement their work and show that a robot, which
has a known upper bound on its reaction time and considers
discs as velocity obstacle sets (i. e., known forward speed and
unknown turn rate, as allowed by [27]), moves safely.

Hybrid models of driver support systems in cars [12} [16]
have been verified with a model of the continuous dynamics of
cars. That points out interesting safety conditions for vehicles
on straight lines, but not in the general two-dimensional case
that we consider in this work.

Safety of aircraft collision avoidance maneuvers in the
two-dimensional plane was verified for constant translational
velocity and a rotational velocity that stays constant during the
maneuver [13, 22]]. Our models include acceleration for both
translational and rotational velocity.

LTLMOoP contains an approach [23] to guarantee high-
level behavior for map exploration when the environment
is continuously updated. The approach synthesizes and re-
synthesizes plans, expressed in linear temporal logic, of a
hybrid controller, when new map information is discovered.
This work focuses on preserving the state and task completion
history, and thus on guaranteeing that the robot will follow
a high-level behavior (e.g., visit all rooms) even when the
controller is re-synthesized, not on safe obstacle avoidance.

Pan et al. [17] propose a method to smooth the trajecto-
ries produced by sampling-based planners in a collision-free
manner. Our paper proves that such trajectories are indeed

safe when considering the control choices of a robot and its
continuous dynamics.

LQG-MP [26] is a motion planning approach that takes
into account the sensors, controllers, and motion dynamics of
a robot while working with uncertain information about the
environment. The approach assesses randomly generated paths
by the approximated probability of a collision with an obstacle.
One goal is to select paths with low collision probability;
however, guaranteeing collision-free motion is not their focus,
since a collision-free path may not even have been generated.

Althoff et al. [1] use a probabilistic approach to rank
trajectories according to their collision probability. To further
refine such a ranking, a collision cost metric is proposed, which
derives the cost of a potential collision by considering the
relative speeds and masses of the collision objects.

Seward et al. [24] try to avoid potentially hazardous
situations by using Partially Observable Markov Decision
Processes. Their focus, however, is on a user-definable trade-
off between safety and progress towards a goal. Hence, safety
is not guaranteed under all circumstances.

In summary, this paper addresses safety of robot obstacle
avoidance in the following manner.

e Unlike [3} [23H25, 27], we study combined models of
the hybrid dynamics in terms of discrete control and
differential equations for continuous physical motion of
the robot as well as the obstacles, not discrete control
alone or only the behavior of obstacles.

e Unlike [12, 13} [16l 22 [25], we verify safety in the
two-dimensional plane not one-dimensional space and do
not assume constant translational and rotational velocity,
but include accelerations for both, as needed for ground
vehicles.

e Unlike [1}, 17} 23| 24} 26], we produce formal, deductive
proofs in a formal verification tool. Note, that in [25]] the
correctness of the implementation w.r.t. the algorithm’s
specification was formally verified, but not the motion of
the robot.

e Unlike [17, 23| 25]], we verify safety even in the presence
of moving obstacles.

e Unlike [3| [17} 23| 23], we verify passive friendly safety,
which is important because passive (non-friendly) safe
robots may cause unavoidable collisions by stopping in
unsafe places so that obstacles will collide with them.

e Unlike [3} 12} 22} 23], we consider sensor and actuator
uncertainty in our verification results.

e Unlike [11} 24} 26], we do not minimize or probabilistically
minimize collisions, but prove that collisions can never
occur (as long as the robot system fits to the model).

III. PRELIMINARIES: DIFFERENTIAL DYNAMIC LOGIC

A robot and the moving obstacles in its environment form
a hybrid system: they make discrete control choices (e.g.,
compute the actuator set values for acceleration, braking,
or steering), which in turn influence their actual physical
behavior (e.g., slow down to a stop, move along a curve).
Hybrid systems have been considered as joint models for both
components, since verification of either component alone does
not capture the full behavior of a robot and its environment.

TABLE I: Hybrid program representations of hybrid systems.

Statement Effect

3 B sequential composition, first run «, then 3
U nondeterministic choice, following either o or 3
nondeterministic repetition, repeats o m > 0 times
6 assign value of term 6 to variable x (discrete jump)
* assign arbitrary real number to variable x
=01,..., evolve x; along differential equation system a:: =0;
x,, =0, & F) restricted to maximum evolution domain F'

In order to verify safe obstacle avoidance, we use differ-
ential dynamic logic dC [18] 20} 21]], which has a notation for
hybrid systems as hybrid programs. We use hybrid programs
for modeling a robot that follows the dynamic window algo-
rithm as well as for modeling the behavior of moving obstacles.
dZ allows us to make statements that we want to be true for all
runs of the program (safety) or for at least one run (liveness).
Both constructs are necessary to verify safety: for all possible
control choices and entailed physical motion, our robot must
be able to stop, while at the same time there must be at least
one possible execution in which the obstacle is able to stop
without collision as well. Table [I| summarizes the syntax of
hybrid programs together with an informal semantics.

Sequential composition «; [says that 3 starts after «
finishes (e.g., first let the robot choose acceleration, then
steering angle). The nondeterministic choice o U [follows
either o or 3 (e.g., let the robot decide nondeterministically
between remaining stopped or accelerating). The nondetermin-
istic repetition operator * repeats « zero or more times (e. g.,
let the robot repeatedly control and drive). Assignment x := 6
instantaneously assigns the value of the term 6 to the variable
x (e. g., let the robot choose maximum braking), while z := *
assigns an arbitrary value to x (e. g., let the robot choose any
acceleration). ' = 6 & F describes a continuous evolution
of = within the evolution domain F' (e. g., let the velocity of
the robot change according to its acceleration, but never lower
than zero). The test 7F checks that a particular condition F’
holds, and aborts if it does not (e. g., test whether or not the
distance to an obstacle is large enough). A typical pattern that
involves assignment and tests is to limit the assignment of
arbitrary values to known bounds (e.g., limit an arbitrarily
chosen acceleration to the physical limits of the robot, as in
x :=x*; 7x < A, which says x is any value less or equal A).

The set of dC formulas is generated by the following
EBNF grammar (where ~ € {<,<,=,>,>} and 6,0y are
arithmetic expressions in +, —, -, / over the reals):

¢u=01~02| 20| oY | GV | — o | Voo | [0]o | (a)o

Further operations, such as Euclidian norm ||6|| and infinity
norm ||#]|~ of a vector 6, are definable.

To specify the desired correctness properties of hybrid
programs, dC formulas of the form F' — [a]G mean that all
executions of the hybrid program «, which start at a state in
which formula F is true, lead to states in which formula G is
true. Dually, formula F' — (a)G expresses that there is a state
reachable by the hybrid program « that satisfies formula G.

Differential dynamic logic comes with a verification tech-
nique to prove those correctness properties. We did all our

proofs in the verification tool KeYmaera, which implements
this verification technique [18H20]. KeYmaera supports hybrid
systems with nonlinear discrete jumps, nonlinear differential
equations, differential-algebraic equations, differential inequal-
ities, and systems with nondeterministic discrete or continuous
input. This makes KeYmaera more readily applicable to robotic
verification than other hybrid system verification tools, such
as SpaceEx [10], which focuses on piecewise linear systems.
KeYmaera implements automatic proof strategies that decom-
pose hybrid systems symbolically [20]. This compositional
verification principle helps scaling up verification, because
KeYmaera verifies a big system by verifying properties of
subsystems. Strong theoretical properties, including relative
completeness results, have been shown about dC [18] 21]]
indicating how this composition principle can be successful.

IV. ROBOTIC GROUND VEHICLE NAVIGATION

The robotics community has come up with a large variety
of robot designs, which differ not only in their tool equipment,
but also (and more importantly for the discussion in this
paper) in their kinematic capabilities. We focus on wheel-based
vehicles. In order to make our models applicable to a large
variety of robots, we use only limited control options (e. g.,
do not move sideways to avoid collisions). We consider robots
that drive forward (non-negative translational velocity) in se-
quences of arcs in two-dimensional space Such trajectories
can be realized by robots with single wheel drive, differential
drive, Ackermann drive, synchro drive, or omni drive [4].

Many different navigation and obstacle avoidance algo-
rithms have been proposed for such robots, e.g. dynamic
window 9, potential fields 11, or velocity obstacles [8]]. For
an introduction to various navigation approaches for mobile
robots, see [2, |6]. In this paper, we focus on the dynamic
window algorithm [9], which is derived from the motion
dynamics of the robot and thus discusses all aspects of a hybrid
system (models of discrete and continuous dynamics). Other
approaches, such as velocity obstacles [8]], are interesting for
further work on provably safe moving obstacle avoidance.

We want to prove motion safety of a robot that avoids
obstacles by dynamic window navigation. Under passive safety
[14], the vehicle is in a safe state if it is able to come to
a full stop before making contact with an obstacle (i.e., the
vehicle does not itself collide with obstacles, so if a collision
occurs at all then while the vehicle was stopped). Passive
safety, however, puts the burden of avoiding collisions mainly
on other objects. The safety condition that we want to prove
additionally is the stronger passive friendly safety [14]: we
want to guarantee that our robot will come to a full stop
safely under all circumstances, but will also leave sufficient
maneuvering room for moving obstacles to avoid a collisionE]

We consider both models and both safety properties to
show the differences between the assumed knowledge and the
safety guarantees that can be made. The verification effort and
complexity difference is quite instructive: passive safety can
be guaranteed by proving safety of all robot choices, whereas
passive friendly safety additionally requires liveness proofs for

3 If the radius of such a circle is infinite, the robot drives (forward) on a
straight line. * The robot ensures that there is enough room for the obstacle
to stop before a collision occurs. If the obstacle decides not to, the obstacle
is to blame and our robot is still considered safe.

10

8 -

A //

M a\ -

] a) \ ﬂ/ N A S

'// \ / \\ /)/ N

— =

f \\v AV \\/ \/ L L

(a) Position (pZ,pY), translational velocity
vr and rotational velocity w, for positive
acceleration on a circle.

2k

(b) Position (pZ,p}.), translational velocity
v, and rotational velocity w, for braking to
a complete stop on a circle.

-0 \

(c) Position (p¥, p}.), translational velocity v
and rotational velocity w, for translational
acceleration on a spiral.

L L
05 0

e —
‘ . \/ sl

e e
(d) (p%, p¥) motion plot for acceleratlon

204

~ ~_

(e) (p%,p¥) motion plot for braking .

//// T
d \\
// 0 AN
5] * 35 // \\
/ P S \
/ / N \
// sr \‘ \
.
; m \ L 5 M
\ AN e /
\\\ i 4 / /
_ - N _ // //

() (pg,p}) motion plot for [(c)}

Fig. 1: Trajectories of the robot.

the obstacle. In the following sections, we discuss models and
verification of the dynamic window algorithm in detail.

A. Passive Safety of Obstacle Avoidance

The dynamic window algorithm is an obstacle avoidance
approach for mobile robots equipped with synchro drive [9]
but can be used for other drives too [5]. It uses circular
trajectories that are uniquely determined by pairs of transla-
tional and rotational velocity (v,w). The algorithm is roughly
organized into two steps: (i) The range of all possible pairs of
translational and rotational velocities is reduced to admissible
ones that result in safe trajectories (i. e., avoid collisions since
those trajectories allow the robot to stop before it reaches the
nearest obstacle). The admissible pairs are further restricted
to those that can be realized by the robot within a short time
frame (the so-called dynamic window). If the set of admissible
and realizable velocities is empty, the algorithm stays on the
previous safe curve (such curve exists unless the robot started
in an unsafe state). (ii) Progress towards the goal is optimized
by maximizing a goal function. For safety verification, we can
omit the second step and verify the stronger property that all
choices that are fed into the optimization are safe.

a) Modeling: We develop a model of the principles in
the dynamic window algorithm as a hybrid program in dZ. The
dynamic window algorithm safely abstracts the robot’s shape
to a single point, since other shapes reduce to adjusting the
(virtual) shapes of the obstacles (cf. [[15] for an approach to
attribute robot shape to obstacles). We also use this abstraction
to reduce the verification complexity. The robot has state vari-
ables describing its current position p, = (p¥, p¥), translational

velocity vr > 0, translational acceleration a,, a direction
vector d,, = (cosd,sin6 E] and angular velocity 6 = wTE]
The translational and rotational velocities are linked w.r.t. the
rigid body planar motion by the formula ||p, — p|w, = vy,
where the radius ||p, — p.| is the distance between the robot
and the center of its current curve p. = (pZ,p¥). Following
[19], we encode sine and cosine functions in the dynamics
using the extra variables df = cosf and dY = sinf to
avoid undecidable arithmetic. The continuous dynamics for
the dynamic window algorithm [9] can be described by the
differential equation system of ideal-world dynamics of the
planar rigid body motion (p*’ = v,.d%, p¥' = v,.dY, v.. = a,,
(lpr = pellwr)’ = ar, d*' = —w,d¥, d¥ = w,d®) where
the condition (||p, — pc||lwr)’ = a, encodes the rigid body
planar motion ||p, —p.||w, = v, that we consider. The dynamic
window algorithm assumes direct control of the translational
velocity v,.. We, instead, control acceleration a, and do not
perform instant changes of the velocity. Our model is closer
to the actual dynamics of a robot, which cannot really change
its velocity instantly. The realizable velocities, then, follow
from the differential equation system.

Figure depicts the position and velocity changes of a
robot accelerating on a circle around a center point p. = (2,0).
The robot starts at p. = (0,0) as initial position, with
v, = 2 as initial translational velocity and w, = 1 as initial
rotational velocity; Figure [I[d)] shows the resulting circular

trajectory. Figure and Figure show the resulting

5 As stated earlier, we study unidirectional motion: the robot moves along
its direction, that is the vector d, gives the direction of the velocity vector.
6 The derivative with respect to time is denoted by superscript prime (').

curve when braking (the robot brakes along the curve and
comes to a complete stop before completing the circle). If
the rotational velocity is constant (w]. = 0), the robot drives
an Archimedean spiral with the translational and rotational ac-
celerations controlling the spiral’s separation distance (a, /w?).
The corresponding plots are shown in Figures and [I[D)

As in the dynamic window algorithm, we assume bounds
for the acceleration a, in terms of a maximum acceleration
A > 0 and braking power b > 0, as well as a bound €2 on the
rotational velocity w,.. We use ¢ to denote the upper bound for
the control loop time interval (e. g., sensor and actuator delays,
sampling rate, and computation time). That is, the robot may
react as quickly as it wants, but it can take no longer than ¢.
Notice that, without such a time bound, the robot would not
be safe, because its control might never run. In our model,
all these bounds will be used as symbolic parameters and not
concrete numbers. Therefore, our results apply to all values of
these parameters and can be enlarged to include uncertainty.

An obstacle has vector state variables describing its current
position p, = (p%,p¥) and velocity v, = (vZ¥,vY). The
obstacle model is very liberal. The only restriction about the
dynamics is, that within € time units, they move continuously
with bounded velocity ||v,|| < V. Note, that the dynamic
window algorithm considers a special case V' = 0 (obstacles
are stationary). Depending on the relation of V' to €, moving
obstacles can make quite a difference, e. g., when fast obstacles
meet communication-based virtual sensors as in RoboCup!/|

In order to determine admissible velocities, the dynamic
window algorithm requires the distance to the nearest obstacle
for every possible curve. In the presence of moving obstacles,
however, all obstacles must be considered and tested for safety
(e.g., in a loop). To capture this requirement, our model
nondeterministically picks any obstacle p, := (*, *) and tests
its safety, which includes safety for the worst-case behavior
V' of the nearest obstacle (ties are included) and is thus safe
for all possible obstacles. In the case of non-point obstacles,
Do denotes the obstacle perimeter point that is closest to the
robot (this fits naturally to obstacle point sets delivered by
radar sensors, from which the closest point will be chosen).
At each active step of the robot, the position p, is updated
(again nondeterministically to summarize all obstacles). In this
process, the robot may or may not find another safe trajectory.
If it does, the robot can follow that safe trajectory w.r.t. any
nondeterministically chosen obstacle (again, V' ensures that all
other obstacles will stay more distant than the worst case of
the nearest). If not, the robot can still brake on the previous
trajectory, which is known to be safe.

Model 1] represents the common controller-plant model: it
repeatedly executes control choices followed by dynamics, cf.
(I). For the sake of clarity we restrict the study to circular
trajectories with constant positive radius, that is ||p, —p.|| > 0,
which also covers straight line trajectories if the radius is

infinite. Thus, the condition (||p, — pellw,)’ = a, can be
rewritten as w,. = ”p.“%plu. We have bundled adjusted dy-

namics for spinning behavior (||p, — p.| = 0, w, # 0) and
Archimedean spiral (w). = 0, a, # 0) with KeYmaera. The
control of the robot is executed in parallel to that of the
obstacle, cf. (Z). The obstacle itself may choose any velocity

7 http://www.robocup.org/

Model 1 Dynamic window with passive safety

dwps = (ctrl; dyn)* (D
ctrl = ctrl, || ctrl, 2)
ctrly, = v, = (%,%); ?vo|| <V 3)
ctrl, = (a, := —b) 4)
U(?v, =0; ap :=0; w, :=0) (5)
U(a, :=%; 7=b < a, < A4 (6)
wr =% 71— Q< w, <Q; @)
Pc = (*7 *); d, = (*7 *); (®)
Do = (*,%); Pcurve A safe))
curve = ||p, — pell > 0 Awy||pr — pe|| = v (10)

oL

Ad, = (pr pc)
[pr — pell
v2 A A
=|lp, — L (=41 (= 11

safe = ||p po||oo>2b+(b +) (26 +5vr> 1n

+A
+V(s+v : E) 12
dyn = (t :=0; p* =v,.d*, p¥' =v.dY, (13)
d* = —w,d¥, d¥ = w,d”, (14)
Py =g, py =Y, (15)
v=ap, W= — =1 (16)

pr — pell

& v, >0ANt<e) (r7)

in any direction up to the worst-case velocity V' assumed about
obstacles (||v,|| < V), cf. @B). This uses the modeling pattern
from Section we assign an arbitrary value to the obstacle’s
velocity (v, := (%, *)), which is then restricted to any value up
to the worst-case velocity using a subsequent test (?||v,|| < V).

The robot is allowed to brake at all times since (@) has no
test. If the robot is stopped, it may choose to stay in its current
spot, cf. (5). Finally, the robot may choose a new safe curve
in its dynamic window: it chooses any acceleration within the
bounds of its braking power and acceleration (6), and any
rotational velocity in the bounds, cf. (7). This corresponds to
testing all possible acceleration and rotational velocity values
at the same time. An actual implementation would use loops to
enumerate all possible values and all obstacles and test each
pair (v,,w,) separately w.r.t. every obstacle. The admissible
pairs would be stored in a data structure (as e. g., in [25]).

The curve is determined by the robot following a circular
trajectory around the rotation center p., starting in direction d,.
with angular velocity w,., cf. (8). The distance to the nearest
obstacle on that curve is measured in (9). The trajectory starts
at p,- tangential to the circle centered at p.—which has positive
radius—with translational velocity v, and rotational velocity
w, as defined by w,||p, — pe|| = v, in (O)F]

A circular trajectory around the rotation center p. ensures
passive safety if it allows the robot to stop before it collides
with the nearest obstacle. Consider the worst case where the

8 d, = (Pr_pc)L
" lpr—pell

normalized by the radius, as in df =

means component-wise equality of the orthonormal vector,
_PYTPE A q¥ — ProPC
lpr—pell T lpr—pell”

http://www.robocup.org/

center p, is at infinity and the robot travels on a straight line.
In this case, the distance between the robot’s current position
p, and the nearest obstacle p, must account for the following
components: First, the robot needs to be able to brake from

2
its current velocity v, to a complete stand still, cf. % =

fovr/ b(vT—bt)dt in (TT)). Second, the robot may not react before
€ time units. Thus, we must additionally take into account the
distance that the robot may travel w.r.t. the worst-case acceler-
ation A and the distance needed for compensating its potential
acceleration of A during that time with braking power b, cf.
(4 + 1) (422 +2v,) = [(vt At)dt+ [/ (v, + Ac—bt)dt
in (IT)). Third, during the worst-case time (¢ + ”TJFAE) entailed
by @ the obstacle may approach the robot in the worst
case on a straight line with maximum velocity V, cf. (12).
To simplify the proof, we measure the distance between the
robot’s position p, and the obstacle’s position p, in the infinity-
norm ||p, — polloo (i-€., both |p¥ — pZ| and |p¥ — p¥| must be
safe) and thus over-approximate the Euclidean norm distance
Ipr = poll2 = +/(pF —p2)? + (¥ — p2)? by a factor of at
most /2. Finally, the continuous dynamics of the robot and
the obstacle are defined in (T3)—(T7).

b) Verification: We verify the safety of the control
algorithm modeled as a hybrid program in Model [I} using
a formal proof calculus for dZ [18-20]. The robot is at a safe
distance from the obstacle, if it is able to brake to a complete
stop at all times before the approaching obstacle reaches the
robot. The following condition captures this requirement as a
property that we prove to hold for all executions:

v2
Ops = (v, =0)V (Hpr Dol > = +V b) . (18)

2b

The formula (T8) states that the robot is stopped or the
robot and the obstacle have different positions szafely apart.

This accounts for the robot’s braking distance % while the
obstacle is allowed to approach the robot with its worst case
travel distance V' %=. We prove that the property (I8) holds for
all executions of Model [under the assumption that we start

in a state satisfying the following condltlonsﬂ

Pps = Gps A (lpr = pell > 0) A([lde]| = 1) (19)

The first condition of the conjunction formalizes the fact that
we are starting in a position that is passively safe, that is ¢y
holds. The second conjunct states that the robot is not initially
spinning. The last conjunct ||d,|| = 1 says that the direction
d, 1s a unit vector.

Theorem 1 (Passive safety): If the robot starts in a state
where)y, holds, then the control model dwps (Model
always guarantees the passive safety condition (¢p), as
expressed by the provable dC formula: ¢y — [dWps|dps.

We proved Theorem [] for circular trajectories, spinning,
and spiral trajectories using KeYmaera, a theorem prover for
hybrid systems. In the next section, we explore the stronger
requirements of passive friendly safety, where the robot will
not only safely stop itself, but also allow for the obstacle to
stop before a collision occurs.

9 The formal proof uses the additional constraints stated earlier, v, > 0,
A>0,V>0,22>0,b>0,and € > 0, which we leave out for simplicity.

B. Passive Friendly Safety of Obstacle Avoidance

Passive friendly safety, as introduced above, requires the
robot to take careful decisions that respect the features of mov-
ing obstacles. The definition of Macek et al. [14] requires that
the robot respects the worst-case braking time of the obstacle.
In our model, the worst-case braking time is represented as
follows. We assume an upper bound 7 on the reaction time of
the obstacle and a lower bound b, on its braking capabilities.
Then, 7V is the worst-case distance 2that the obstacle can
travel before actually reacting and 2b is the distance for
the obstacle to stop from the worst-case velocity V with an
assumed minimum braking capability b,.

c) Modeling: Model |2 uses the same obstacle avoid-
ance algorithm as Model [I] The essential difference reflects
what the robot considers to be a safe distance to an obstacle.
As shown in (2T)) the distance not only accounts for the robot s
own braking distance, but also for the braking distance ¥ 25, and
reaction time 7 of the obstacle. The verification of passive
friendly safety is more complicated than passive safety as it
accounts for the behavior of the obstacle discussed below.

Model 2 Dynamic window with passive friendly safety

dwpts = (ctrl;dyn)™ (see Model [I] for details) 20)
2 V2

= r — Folloo a1 Y 21

safe = ||pr — pol| >2b+2b +7V 21

A A
+ (b +1> <2€2 —&—sv,.) +V (54—

d) Verification: We verify the safety of the robot’s
control choices as modeled in Model 2] Unlike the passive
safety case, the passive friendly safety property ¢, should
guarantee that if the robot stops, moving obstacles (cf. Model
B) still have enough time and space to avoid a collision. This
requirement can be captured by the following d£ formula:

v, + Ae
b

npfs =

(=0 n (1= pull > 3 +7V) 0 <0y <)
ol >) A (= 0)). 22)

Equation (22) says that, once the robot stops (v, = 0), there

exists an execution of the hybrid program obstacle, (existence
of a run is formalized by the diamond operator (obstacle)),
that allows the obstacle to stop (v, = 0) before a collision
occurs (||pr — pol| > 0). Passive friendly safety is now stated
as Pprs = (@ps V vr = 0) A mpgs, Where the property o is
analogue to the passive safety property ¢, w.r.t. Model

— (obstacle) ((||pr

2 V2
| > 554 o+ V ()
Poll = 95 ™ 20, b
We study the passive friendly safety with respect to the initial
feasible states satisfying the following property:

—pel > 0) A (lldr]| = 1) (23)

Observe that, in addition to the condition 7, the difference
with the passive safety condition is reflected in the special
treatment of the case v,, = 0. Indeed, if the robot would start

Pps = ”pr

1/}pfs = Pps N (”pr

with a null translational velocity (which is passive safety) while
not satisfying ¢y, then we cannot prove the passive friendly
safety as the obstacle may be unsafely close already initially.
Besides, we can see in ¢pg that we are required to prove 7y
even when the robot comes to a full stop.

In Model [2] the hybrid program ctrl, is a coarse model
given by equation (3), which only constrains its non-negative
velocity to be less than or equal to V. Such an obstacle could
trivially prevent a collision by stopping instantaneously. In
Tlpts» We consider a more interesting refined obstacle behavior
modeled by the hybrid program given in Model [3]

Model 3 Refined obstacle controls acceleration

obstacle = (ctrlyr; dyn,,.)* (24)
ctrlor = dy = (%,%); ?||do]| = 1; (25)
Ao := %*; Ty + oo <V (26)

dyn,, = (t :=0; p*' =v,d%, p¥ =v,d?, 27

vh=a,, t'=1&t<e,ANv, >0)

The refined obstacle may choose any direction as described
by the unit vector d,, in and any acceleration a,, as long as
it does not exceed the velocity bound V, cf. (26). The dynamics
of the obstacle are straight ideal-world translational motion in
the two-dimensional plane, see ([27).

Theorem 2 (Passive friendly safety): If the property pg
holds initially, then the control model dwps (Model ,
guarantees the passive friendly safety condition ¢pg in pres-
ence of obstacles per Model |3 as expressed by the provable
dC formula: g — [dWps] Pprs-

We verified Theorem [2]in KeYmaera. The symbolic bounds
on velocity, acceleration, braking, and time in the above mod-
els represent uncertainty implicitly (e.g., one may instantiate
the braking power b with the minimum specification of the
robot’s brakes, or with the actual braking power achievable
w.r.t. the current terrain). Dually, whenever knowledge about
the current state is available, the bounds can be instantiated
more aggressively to allow efficient robot behavior (e.g., in
a rare worst case we may face a particularly fast obstacle,
but right now there are only slow-moving obstacles around).
Theorems [I] and Q] are verified for all those values. Other
aspects of uncertainty need explicit changes in the models and
proofs, as discussed in the next section.

C. Safety of Obstacle Avoidance Despite Uncertainty

Robots have to deal with uncertainty in almost every aspect
of their interaction with the environment, ranging from sensor
inputs (e. g., inaccurate localization, distance measurement) to
actuator effects (e. g., wheel slip depending on the terrain). In
this section, we show two examples of uncertainty explicitly
handled by the models. First, we allow localization uncertainty
(the robot knows its position only approximately). We then
consider imperfect actuator commands (braking and acceler-
ation) considered to be within an interval. Such intervals are
instantiated, e. g., according to sensor or actuator specification
(e.g., GPS error), or w.r.t. experimental measurements

10" Instantiation with probabilistic bounds means that the symbolically guar-
anteed safety is traded for a safety probability.

Model 4 Safety despite uncertain position measurements

dwyps = (locate; ctrl; dyn)™ (see Model [I] for details) (28)

locate = p, == (%,%); ?||pr —pr|| < U, (29)
curve = ||ﬁr _ch >0 Awr”ﬁr _ch = Ur (30)
SN L
nd, = Pr=pe)”
[Br — pell
_ v? A A,
safe = ||Dr — Polloo > % + <b + 1) (26 +€Ur> (€29
r+ A
+V (5 + Ub€> +U,

Model [] introduces location uncertainty. It adds a location
measurement p, before the control decisions are made. This
location measurement may deviate from the real position p,. by
no more than symbolic parameter U, cf. (29). The measured
location p, is used in all control decisions of the robot (e. g.,
in (30) to compute the curve’s center point and rotational
velocity), while the robot’s physical motion is still computed
on the symbolic real position p,. We prove in KeYmaera that
the robot is still safe (passive safety), if it accounts for the
location uncertainty as stated in the safety constraint (3I)).

Model 5 Safety despite actuator uncertainty

dwyas = (ctrl; act; dyn)* (see Model [I] for details) (32)
act = Uy, = *; Ay := Umar; 10 < Uy <upy <1 (33)

v2 A A
safe = ||pr — Polloc > ﬁ + (bU + 1) (252 + EUT)
v, + Ae
4
+V (E—i— b) (34)

dyn with a, replaced by a,

Model [3] introduces uncertainty in actuation with an ac-
tuator perturbation between control and dynamics, cf. (32).
Actuator perturbation affects the acceleration by a damping
factor u,,, known to be within [U,,, 1], cf. (33). Note, that this
damping factor can change arbitrarily often, but is assumed to
be constant for £ time units. In the worst case, the robot has full
acceleration (u,, = 1) but fully reduced braking (u,, = Up,).
For instance, the robot accelerates on perfect terrain, but is on
slippery terrain whenever it brakes. The robot considers this
worst case scenario during control in its safety constraint (34).
Using KeYmaera, we prove that the robot is still safe (passive
safety) when it follows Model [3]

V. CONCLUSION AND FUTURE WORK

Robots are hybrid systems, because they share continuous
physical motion with complicated computer algorithms con-
trolling their behavior. We demonstrate that this understanding
also helps proving robots safe. We develop hybrid system
models of the dynamic window algorithm for autonomous
ground vehicles and prove that the algorithm guarantees both
passive safety and passive friendly safety in the presence of

moving obstacles. All the proofs were achieved automati-
cally with some manual guidance using the verification tool
KeYmaera. We manually provided inductive and differential
invariants (crucial), as well as reduced the number of terms
and variables with simple interactions to reduce arithmetic
complexity. 85% of the proof steps were automatic. Most
interactive steps were simple arithmetic simplifications that
KeYmaera’s current proof strategies do not yet automate. We
augment these models and safety proofs with robustness for
localization uncertainty and imperfect actuation. We observe
that incremental revision of models and proofs helps reducing
the verification complexity and understanding the impact of
uncertainty on the behavior of the robot. Further, note that
all symbolic bounds in our models—such as those for max-
imum obstacle velocity and sensor/actuator uncertainty—can
be instantiated with probabilistic models (e. g., assume the 20
confidence interval of the distribution of obstacle velocities as
maximum obstacle velocity). In this case, our verified safety
guarantees translate into a safety probability.

Future work includes refined kinematic capabilities (e. g.,
going sideways with omni-drive) and additional sources of
uncertainties, such as distance measurements. Also, to derive
less conservative safety bounds for specific environments, one
could introduce specific obstacle models (e. g., pedestrians).

ACKNOWLEDGMENTS

This material is based upon work supported by NSF
CAREER Award CNS-1054246 and NSF EXPEDITION CNS-
0926181, by DARPA FA8750-12-2-0291, and by US DOT
UTC TSET award # DTRT12GUTCI11. This work was also
supported by the Austrian BMVIT under grant FIT-IT 829598,
FFG BRIDGE 838526, and FFG Basisprogramm 838181.

REFERENCES

[1] Daniel Althoff, James J. Kuffner, Dirk Wollherr, and
Martin Buss. Safety assessment of robot trajectories
for navigation in uncertain and dynamic environments,
Autonomous Robots, 32:285-302, 2012.

[2] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver.
Visual Navigation for Mobile Robots: A Survey. J.
Intelligent Robotics Systems, 53(3):263-296, 2008.

[3] Sara Bouraine, Thierry Fraichard, and Hassen Salhi.
Provably safe navigation for mobile robots with limited
field-of-views in dynamic environments. Autonomous
Robots, 32(3):267-283, 2012.

[4] Thomas Briaunl. Driving robots. In Embedded Robotics:
Mobile Robot Design and Applications with Embedded
Systems, pages 97-111. Springer, 2006.

[5] Oliver Brock and Oussama Khatib. High-speed navi-
gation using the global dynamic window approach. In
Robotics and Automation, pages 341-346. IEEE, 1999.

[6] Howie Choset, Kevin Lynch, Seth Hutchinson, George
Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian
Thrun. Principles Of Robot Motion. MIT Press, 2005.

[7] Paolo Fiorini and Erwin Prassler. Cleaning and House-
hold Robots: A Technology Survey. Autonomous Robots,
9:227-235, 2000.

[8] Paolo Fiorini and Zvi Shiller. Motion Planning in
Dynamic Environments Using Velocity Obstacles. J.
Robotics Research, 17(7):760-772, 1998.

[9] Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
The dynamic window approach to collision avoidance.
Robotics Automation Magazine, IEEE, 4(1):23-33, 1997.

[10] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott
Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,
Antoine Girard, Thao Dang, and Oded Maler. SpaceEx:
Scalable verification of hybrid systems. In S. Qadeer
G. Gopalakrishnan, editor, CAV, LNCS. Springer, 2011.

[11] Oussama Khatib. Real-time obstacle avoidance for ma-
nipulators and mobile robots. In Robotics and Automa-
tion, pages 500-505, 1985.

[12] Sarah M. Loos, André Platzer, and Ligia Nistor. |Adaptive
Cruise Control: Hybrid, Distributed, and Now Formally
Verified. In FM, pages 42-56. Springer, 2011.

[13] Sarah M. Loos, David Renshaw, and André Platzer.
Formal verification of distributed aircraft controllers. In
HSCC. ACM, 2013.

[14] Kristijan Macek, Dizan Alejandro Vasquez Govea,
Thierry Fraichard, and Roland Siegwart. [Towards Safe
Vehicle Navigation in Dynamic Urban Scenarios. Au-
tomatika, 50(3—4):184-194, 2009.

[15] Javier Minguez, Luis Montano, and José Santos-Victor.
Abstracting Vehicle Shape and Kinematic Constraints
from Obstacle Avoidance Methods. Autonomous Robots,
20(1):43-59, 2006.

[16] Stefan Mitsch, Sarah M. Loos, and André Platzer. To-
wards formal verification of freeway traffic control. In
ICCPS, pages 171-180. IEEE, 2012.

[17] Jia Pan, L. Zhang, and D. Manocha. Collision-free and
smooth trajectory computation in cluttered environments|
J. Robotics Research, 31(10):1155-1175, 2012.

[18] André Platzer. Differential Dynamic Logic for Hybrid
Systems. J. Autom. Reas., 41(2):143-189, 2008.

[19] André Platzer. Differential-algebraic Dynamic Logic for
Differential-algebraic Programs. J. Log. Comput., 20(1):
309-352, 2010.

[20] André Platzer. Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics. Springer,
2010.

[21] André Platzer. The Complete Proof Theory of Hybrid
Systems. In LICS, pages 541-550. IEEE, 2012.

[22] André Platzer and Edmund M. Clarke. Formal Verifica-
tion of Curved Flight Collision Avoidance Maneuvers: A
Case Study. In FM, pages 547-562. Springer, 2009.

[23] Shahar Sarid, Bingxin Xu, and Hadas Kress-Gazit. |Guar-
anteeing High-Level Behaviors while Exploring Partially
Known Maps! In Robotics: Science and Systems, 2012.

[24] Derek Seward, Conrad Pace, and Rahee Agate. Safe and
effective navigation of autonomous robots in hazardous
environments. Autonomous Robots, 22:223-242, 2007.

[25] Holger Téubig, Udo Frese, Christoph Hertzberg,
Christoph Liith, Stefan Mohr, Elena Vorobev, and Den-
nis Walter. |Guaranteeing functional safety: design for
provability and computer-aided verification. Autonomous
Robots, 32:303-331, 2012.

[26] Jur van den Berg, Pieter Abbeel, and Ken Goldberg.
LQG-MP: Optimized Path Planning for Robots with
Motion Uncertainty and Imperfect State Information. In
Robotics: Science and Systems, 2010.

[27] Albert Wu and Jonathan P. How. Guaranteed infinite hori-
zon avoidance of unpredictable, dynamically constrained
obstacles. Autonomous Robots, 32:227-242, 2012.

http://dx.doi.org/10.1007/s10514-011-9257-9
http://dx.doi.org/10.1007/s10514-011-9257-9
http://dx.doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/article/10.1007%2Fs10514-011-9258-8
http://dx.doi.org/article/10.1007%2Fs10514-011-9258-8
http://dx.doi.org/10.1109/ROBOT.1999.770002
http://dx.doi.org/10.1109/ROBOT.1999.770002
http://dx.doi.org/10.1023%2FA%3A1008954632763?LI=true
http://dx.doi.org/10.1023%2FA%3A1008954632763?LI=true
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73159
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73159
http://dx.doi.org/10.1007%2Fs10514-006-5363-5
http://dx.doi.org/10.1007%2Fs10514-006-5363-5
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1177/0278364912453186
http://dx.doi.org/10.1177/0278364912453186
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://dx.doi.org/10.1007/978-3-642-05089-3_35
http://www.roboticsproceedings.org/rss08/p48.html
http://www.roboticsproceedings.org/rss08/p48.html
http://www.roboticsproceedings.org/rss08/p48.html
http://dx.doi.org/10.1007%2Fs10514-006-9721-0?LI=true
http://dx.doi.org/10.1007%2Fs10514-006-9721-0?LI=true
http://dx.doi.org/10.1007%2Fs10514-006-9721-0?LI=true
http://dx.doi.org/10.1007%2Fs10514-011-9271-y
http://dx.doi.org/10.1007%2Fs10514-011-9271-y
http://www.roboticsproceedings.org/rss06/p17.html
http://www.roboticsproceedings.org/rss06/p17.html
http://dx.doi.org/10.1007/s10514-011-9266-8
http://dx.doi.org/10.1007/s10514-011-9266-8
http://dx.doi.org/10.1007/s10514-011-9266-8

	Introduction
	Related Work
	Preliminaries: Differential Dynamic Logic
	Robotic Ground Vehicle Navigation
	Passive Safety of Obstacle Avoidance
	Passive Friendly Safety of Obstacle Avoidance
	Safety of Obstacle Avoidance Despite Uncertainty

	Conclusion and Future Work

