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Abstract—We address the problem of cooperative transporta-

tion of a cable-suspended payload by multiple quadrotors. In (z1,R1) € SE(3)
previous work, quasi-static models have been used to study this
problem. However, these approaches are severely limited because
they ignore the payload dynamics, and do not explicitly model
the underactuation in the control problem. Thus, there are no
guarantees on the payload trajectory or the cable tensions, whic
must be non negative. In this paper, we develop a complete N
dynamic model for the case when payload is a point load and for G
the case when the payload is a rigid body. We show in both cases z,RL) € SE(3) ;.\
the resulting system is differentially flat when the cable tensions '
are strictly positive. We also consider the case where the tensions

are non negative (including the case with zero tensions) and Fig. 1: Load being transported by n quadrotors.
establish that these systems are differentially flat hybrid systems

by considering the switching dynamics induced by the unilateral

tension constraints. We use the differential flathess propertyd

find dynamically feasible trajectories for the payload+quadrotors P . . .
system. We show using numerical and experimental methods that In all these cases, equilibrium position and orientatiorthef

these trajectories are superior to those obtained by quasi-stiat suspend_ed pa_lyload are configurations in which the gravity
models. wrench is equilibrated by the wrenches exerted by the cables

From a static analysis, it is clear that at least three cadnles
|. INTRODUCTION required to suspend the payload in any desired configuration
Aerial robotics is a growing field with a wide range Oflndeed this case has been studied in detail by [4, 5] However
civil and military applications. The last five years haverseedll these approaches are based on quasi-static modelstheith
the maturation of micro aerial vehicles, especially queatsy @ssumption that the load (and therefore the quadrotors) hav
that range from tens of centimeters to several meters wiitptions that give rise to negligible inertial forces. Howe\as
payloads that are limited to less than several kilogrars [Bg€n in the experimental results and videos in these papirs,
While these robots can maneuver in highly-constrainedethréuite clear that this quasi-static assumption is not vatideed
dimensional environments, they are limited in terms oftheit iS impossible to make any assertions about the resulting
payload carrying capacity. However, these robots can caffgiectory without explicitly modeling and analyzing thellf
payloads beyond the capacity of individuals by collabogti dynamics of the system.
in manipulation and transportation tasks. Teams of robotsWe address this limitation in all previous papers by stugyin
can be used for transportation in search and rescue missighe dynamics of cooperative manipulation by using a coraplet
environmental monitoring, and for surveillance tasks. dynamic model for the cases when payload is (a) a point
In this paper, we are particularly interested in coopeeativoad; and (b) a three-dimensional rigid body. We show in both
transportation tasks where the payload is suspended bgscalshses the resulting system is differentially flat when thaeca
from multiple quadrotors. This task is closely related tdale tensions are strictly positive. We also consider the caserevh
towing, the manipulation of a payload suspended by a caltlee tensions are non negative (including the case with zero
from a moving aerial robol [2]. A single quadrotor with a aabltensions) and establish that these systemgliffierentially flat
suspended load has been studiedlin [3]. Cooperative aehgbrid systemby considering the switching dynamics induced
towing has also been studied, in particular by |[4, 5] 16, 7hy the unilateral tension constraints. We use the difféaént



flatness property to find dynamically feasible trajectofigs

the payload+quadrotors system. We show using numerical and
experimental methods that these trajectories are supgrior
those obtained by quasi-static models.

The rest of the paper is structured as follows. Sedfion |
establishes the differential-flatness of thequadrotor cable-
suspended load system, both with point-mass and rigid-b
loads. Sectiori 1l presents the hybrid model for both these
systems, and establishes that thesedéferentially-flat hybrid
systemsSection IV presents numerical and experimental re- zp € R?
sults for a rigid-body load carried by three quadrotorsaf§n  Fig. 2: Point-Mass Load being transported by n quadrotors.
Sectiorl Y provides concluding remarks and thoughts on éutur
work.

il’l,Rl) S

Using the tension in the cabl€s; € R, the Euler dynamics

Il. DIFFERENTIAL FLATNESS . .
. ) . of the n quadrotors and the load can be easily written down
We will consider two systems, a point-mass load suspendgd ¢ iows

by cables fromn quadrotors, and a rigid-body load also

suspended by cables from quadrotors. To enable planning m;i; = fiR;e3 —miges + Tiq, (2)
dynamic trajectories of the cable-suspended load for laeria T+ Qs x J,.Q = M, (3)
transportation, we will demonstrate that both these system .

are differentially flat [8) 9| 2]. Differential-flatness hagen MLTL = _ZTiqZ' —MLgEs, (4)

employed for planni_ng dynamic_ trajectories for q“admt%here ma, Ji, f; are the mass, inertia and thrust of tHé
systemsL[10]. In Sectidn 1V, we will make use the flat Outputs agrotor,m; is mass of the load, ang is the standard unit

to plan dynamic trajectories. vector along the z-axis of the world.

Definition 1. Diiferentially—:lat-sys.tem [9.]:A syste.ma'; — Lemma 1. (Differential-Flatness of thex quadrotor, point-
f(?c,u), r € R™, zfn e R™, is d|fferent|ally'ﬂat if t(h)ere mass load systeny > 1) Y, = (vz,Tigi;), for i €
exists outputy; € R™ of the formy = y(@,u,d, - -, u ™), {2,---,n},j € {1,--- ,n} is a set of flat outputs for the

such that. the states and the. inputs can be expressed qﬁﬁdrotor, point-mass load system, whergis the yaw angle
v =y, g,y D) u = uy, g,y W), wherep, g are ¢ e i’ quadrotor,

finite integers. Proof. From z;, and its higher order derivatives, the left
To demonstrate the differential flatness property of tHeand side of(d) can be determined. Next, from the knowledge
multiple-quadrotor cable-suspended system, we first dpval Of the flat outputsTiq;, for i € {2,---,n}, Tiq: can be
dynamical model of system based on Newton-Euler equatiog¢termined from@@). The unit vectorsg; = Tiq;/||Tiq:l,
and then use this to identify a set of flat outputs. and the tensiorll; = T;q; - ¢; can also be determined for
For the two systems presented in this paper, we will makec {1,---,n}. The quadrotor positions can then be deter-
the following assumptions, mined using(). All remaining gquantities,R;, Q;, f;, M; can
1) Cables are massless and do not stretch. be determined from knowledge:af «; and their higher-order
2) Cables are attached at the quadrotor’s center of mas8erivatives, sincéx;, ;) are flat outputs for a quadrotorm

3) Air drag on the quadrotors and the load is negligible. remark1. The load positionz 1, needs to be differentiated six

4) When a cable goes from being slack to taut, there iSties, and the tensior&g;,i > 2 needs to be differentiated
discrete change in the velocity of the system, and thigy, times to obtain the entire state of the system, alonb wit
is modeled based on a perfectly inelastic collision.  {he feedforward thrusts and moments for the quadrotors.

A. PointMass Load B. Rigid-Body Load
We first consider th_e pqlnt-mass Ioaq suspended by 1 Having established the differential-flatness of thquadro-
guadrotors as shown in Figuré 2. The independent degree:io f

¢  thi he | o s ' point-mass load, we now consider a rigid body load.
reedom (DOF) of this system are the load positiop, e R ' First, from the geometry of how the load is attached to the
the attitude of the suspended cablgse S?, and the attitude

uadrotors, see Figuré 1, we have the quadrotor positi@angiv
of the quadrotorsR; € SO(3) (See Tabléll for definitions of N gure a P g

by the following kinematic relation,
various symbols used in the paper.) Defining the length of thg g

ith cable asl;, from the geometry of how the load is attached z; =z + Rp(ri — Liqs), (5)
to the quadrotors, we have the quadrotor positiogne R?,

given by the following kinematic relation wherez, is the position of the loady; the position of the'f

guadrotor,R;, the orientation of the loady; the unit vector
x; =xr — Liq;. (1) from the " quadrotor to the attachment point on the load



mrp €R Mass of Load

Jr, € R3%3 Inertia matrix of the load with respect to the body-fixed frame

R € SO(3) The rotation matrix of the load from the body-fixed frame to thertial frame

Qp €R3 Angular velocity of the load in the body-fixed frame

xr,vr, €R3 Position and velocity vectors of the center of mass of the loatthe inertial frame

m; €ER Mass ofit" quadrotor

J; € R3%3 Inertia matrix of theit® quadrotor with respect to the body-fixed frame

R; € SO(3) The rotation matrix of the*” quadrotor from the body-fixed frame to the inertial frame

Q; eR3 Angular velocity of thei*? quadrotor in the body-fixed frame

x;,v; € R3 Position and velocity vectors of the center of mass ofiffequadrotor in the inertial frame

fi eR Thrust produced by thé" quadrotor

M; € R3 Moment produced by thé” quadrotor

P ER Yaw angle of theit” quadrotor

qi € S? Unit vector from thei®™ quadrotor to its attachment point on the load in body-fixethgeof the load
r; €R3 Vector form the center of mass of the load to the attachmentt mbithe i** quadrotor to the load
L; eR Length of the cable between thi&"* quadrotor and the load

T; €R Tension in the the cable between t##& quadrotor and the load

e1,e2,e3 € R®  Standard unit vector along, y, z axes in the world frame

TABLE I: Various symbols being used.

expressed in the body-fixed frame of the load, antthe vector From (1), we can denote the LHS ¢3) by,

from the center-of-mass of the load to the attachment paint i W

the body-fixed frame of the load. W = [Wf } . (14)
Using the tension in the cable®;, the Euler dynamics of M

then quadrotors and the rigid-body load can be easily writteHhis is, in effect, the load wrench consisting of the neteforc
down as follows, and moment that is produced by the tensions. Further from

, the RHS of is T. Thus can be written as
m;i; = fRie3 —m;ges + RpT;q;, (6) a @z @

Jih + Qi x JiQy = M;, ) *L=W, (15)
8) which is an under-determined set of equations with the ggner
) solution given by(I0). Note that N is a 3n x (3n — 6)
JLQp +Qp x JpQp = Zn x =Tiq;, (9)  matrix whose columns span the kerneldafrepresenting the

mpin = -y RpTig — mrges,

wherei € {1,--- ,n}, and all other symbols are as defined §if°NStraints on the internal forces in the system.
Table[]. From the flat outputs(zr,Rz) and their higher-order
derivatives, W can be determined frof@). Further from
Lemma 2. (Differential-Flatness of then quadrotor, rigid- the flat outputA, T;¢; can be determined for € {1,---,n}
body load systemp > 3.) Yo = (z1,Rr, A ;) for j €  through(@0). Then, the unit vectog; = T;q;/||Tiq:||, and the
{1,---,n} is a set of flat outputs for the quadrotor, rigid- tensionT; = Tjg; - ¢; can also be determined. The quadrotor
body load system, where € R*" ¢ satisfies, positions can then be determined usif@. All remaining
T =3+ W + NA, (10) quantities, R;, ;, f;, M; can be determined from knowledge
. ) of x;,v; and their higher-order derivatives, sinde;, ;) are
with 7', W defined as flat outputs for a quadrotor. n
T Remark2. The load positiong;, needs to be differentiated six

Toqo
T = )

i

_ [Rf (mp(Zr + 963))} . (11) times, and the load orientatioR;, and the mapped tensions
: Jrfp + Qp x JLg A need to be differentiated four times to obtain the entiréesta
Thqn, of the system, along with the feedforward thrusts and masnent

where®™, N are respectively the Moore-Penrose generalizef((i)r the quadrotor.

inverse and the kernel of Remark 3. When the anchor points are symmetric about the
I I - I center-of-mass of the loade., when
N 12)
T2 T Sr; =0, (16)

with thehat map: : R? — so(3) defined by the condition that
Zy =z x y, for all z,y € R3. )

Proof: Notice that(8), (3) can be written as Wy 4+ (Way x 71)
Tiqq T= : + NAv (17)

_ [ RL (mr(ir + ges)) _ % T2 LWp + 17 (Wi x )
JLQL+QLXJLQL .

(@J) can be simplified to

13
(13) where



is the second moment of distribution of the anchor points. I1l. HYBRID SYSTEM MODEL

Remark4. We can derive a special basis fof by represent- [N the previous section, we developed the dynamics
ing the internal forces by pairs of equal and opposite force@nd established that the quadrotor system with either a
Define byu,; the unit vector from anchor pointto j, i.e, ~ cable-suspended point-mass load or a rigid-body load are
S differentially-flat. Now we explicitly consider the case e
ujj = —L——. (19) the tension in any of the cables drops to zero.
[lrs = rill If the tension in any of the cables goes to zero, or if tension

The columns ofV can then be chosen as, in any of the slack cables is reestablished, then the system
T dynamics switches, making this a hybrid system. Without
[0 R T R T ()] ) (20) .
loss of generality, we can assume that at most one cable
where only the'f 3x 1 component and th&"j3x 1 components tension can either drop to zero or one slack cable can get its
are non-zero. For example, faor = 3, we have, tension reestablished to a nonzero value at any given moment
Moreover, we can also assume that this happens sequéhtially

0 . . . : .
Nooo — _uf u(1)3 u 1) i.e., starting with alln cables in tension, only the!” cable
93 012 s 7523 ’ tension can drop to zero, and following this either the-1)*"

cable tension can drop to zero or th€ cable tension can get
and, reestablished, and so on as illustrated in Figure 3. We denot

A Tip 9 by ¥; the continuous-time system that has slack cables for all
= ;13 : (22) quadrotors with indices greater thani.e, T; =0, i > k.
23

Furthermore, we will model the discrete transition map from
Under this basis, a good choice fax(t) would beA = 0, X to X, _;, that occurs when a cable tension drops to zero, as
which would ensure that the tensions in the cables have the identity map, and also enforce the tension= 0, i > k.
components along.;;, thereby resulting in the tension notWe will model the discrete transition map;, from % _; to
performing any isometric work. ¥k that occurs when a tension is reestablished as an inelastic
collision (see Assumption 4), resulting in a discrete cleang

Remark5. An alternative choice for would be in velocity. Moreover, we will assumé\;, is a smooth map.

Tiqr - e The dynamics of the systel, for the point-mass load is as
A= ?ql I B (23) Delow
21({2 . mii; = fiRies —miges + T;q;,

. ]q]- ) JiQ + Qi x J;Q; = M;, X & Sk,
Note that there exists a diffeomorphism between the flauoutp, . T,=0,1>k
space and the state space. This implies that any motion thet mrry = _ZTiql‘ —mrges,
can be generated through one set of flat output variables can
also be generated through another choice of the flat output Xt = A (X)), X e S,

variables. The choice of flat output variables does not &ffec
the system motion, although some choices may be easier toY8
than others for designing the trajectories and the feedéodw
control.

gre X is the state of the entire system, and
d
Se =AX | llow — 2zl = Li, llze —ar]l >0} (24)

Remark6. For the 2-quadrotor load carrying system, & 2), defines the guard (using hybrid system terminology from
Vs = (z1,Rp, ) for k € {1,2} does not form a set of [11]) when the distance between tté&* quadrotor and its

flat outputs, since there exists a degree of underactuatigf@chment point to the load reaches the length of the cable.
corresponding to rotation about the line joining the two W& Will next demonstrate that the hybrid system under

contact points that can not be determined from the flat ostpufPnSideration is alifferentially-flat hybrid systemas defined

In particular, forn = 2, one would expedf3) to be a set of six PElOW-

equations in six variables, however, for this cagec R°*®  Definition 2. A differentially-flat hybrid systenis a hybrid

is rank-deficient for albry, ro. system where each subsystem is differentially-flat, with th

Remark 7. The flat outputA can be so chosen such thaguards being functions of the flat outputs and their deriiei

T,(t) > 0, V4. and moreover there are sufficiently smooth transition maps
' from the flat output space of one subsystem to the flat output

Table[Il contains a summary of the key results in thigpace of the subsequent subsystem.
section. It includes the number of degrees of freedom, numbe

degrees of underactuation, and the flat outputs for the poiffemark 8. A differentially-flat hybrid system does not imply

mass load withn quadrotors including the special case o‘f‘”the states and inputs can be obtained by differentiatirsgt

n o= 1 and for _the rigid-body load withn quadrotors,  1pq inelastic collisions (Assumption 4), the results do nepend on the
including the special case aof = 3. order in which these transitions occur.
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Fig. 3: Transition between subsystems as tension in thescabl
drops to zero or is reestablished to a positive value.

of smooth flat outputs. After all, the system is hybrid, and we (zr,Rr) € SE(3
expect discrete jumps in states and possibly inputs. Idstee Fig. 4: Load being transported by three quadrotors.
mean that each subsystem is differentially flat, and thafl#te

outputs of a subsequent subsystem arise as smooth functions

of the flat outputs of the current subsystem, mapped through

the transition map between the two subsystems. to Quadrotor 3 drops to zero, and the resulting system is no
longer differentially flat by Remai 6. |

Theorem 1. The multiple-quadrotor cable-suspended point-

mass load is a differentially flat hybrid system for> 1. IV. RESULTS

Proof: SupposeZ, = ), is a set of flat outputs for  Haying established the differential-flatness of thquadro-
the n quadrotor, point-mass load system from Lenima 1. NQy; cable-suspended point-mass and rigid-body load myste
suppose at some event, the tension in the cable for one of fae will demonstrate numerical and experimental results for

quadrotors becomes zero. Since the system is differgnfiall ¢ rigid-body case with = 3 quadrotors. An illustration of
this event is known frorg,, and its derivatives. Moreover, theis is as shown in Figur 4.

new systenxt,,_; with n — 1 quadrotors and load, and with a

single free quadrotor is also differentially flat since the-1 A. Numerical Results

guadrotor load system is differentially flat by Lemfda 1, and We choose the flat outputs for the— 3 quadrotor system
the single quadrotor is also differentially flat. Moreovéne with rigid-body load as,

the transition map transforms the flat outpus to 2, =

[Va—1  Vi], wherey,_; corresponds to the flat output of xr
then — 1 quadrotors and load system, a{l’ corresponds to Ry,
the flat output of the:!” quadrotor. Tiqy - ex
When the tension gets re-established, we can obtain the Vs = Tiqr - e2 ' (25)
initial value of Z,, by mapping the flat outpug,_; and its T5q2 - e
higher-order derivatives through the transition may,. (41
We can sequentially compose this all the way to having all P2
the tensions going to zero, and the load undergoing batlisti | Y3
motion.

u Following [10], we could plan a dynamic trajectory that
Next, we consider the multiple-quadrotor system with Binimizes the6'” derivative of the load position, leading to

rigid-body payload and demonstrate that this system isals@ Minimum snap frajectory for the quadrotors. However, we
differentially-flat hybrid system. The hybrid dynamics big consider instead a simple trajectory that serves to ilstthe

system are given as, choice of flat outputs and planning in flat space. The trajgcto
for the load is chosen to be an ellipse in the z plane with
m;@; = fR;es —m;ges + RpT;q;, the frequencyf, given by,
mrip = — ZRLTiQi —mrpges, T, =0,i>k xp(t) = | Ay cos (2m ft) (26)
Y A, sin (27 ft)

JLQL 4 Q< JpQp = i x —Tig,
The other flat outputs are chosen as follows,

Xt = Ap(X), X € S Rp(t) = I, 27)

Theorem 2. The multiple-quadrotor with a cable-suspended Na®)-a (1/3)R, (r/6)msg - ex (28)
rigid-body load is a differentially flat hybrid system for> 3. Hit)q(t) - e2 (1/3)Ry(m/6)mrg - e> (29)

Proof: The proof follows in a similar way to the previous Ty(t)qa(t) - €2 (1/3)Ry(—m/6)mrg-e2  (30)
theorem fom > 3. For n = 3, the tension in the cable attached Yi(t) 0, ke {1,2,3}. (31)



Point-mass load Rigid body load
n quadrotors 1 quadrotor n quadrotors 3 quadrotors
z, €R3 xp €R? (zp,Rr) € SE(3) (zr,RL) € SE(3)
Independent DOF  q1,q2,"*+ ,qn € S2 qes? q1,q2, ,qn € 52 q1,q2,93 € 52
Ri,R2, - ,Rp € SO(3) R € S0O(3) Ri,R2,--- ,Rn € SO(3) R1,R2,R3 € SO(3)
No. of DOF 5n + 3 8 5n 46 21
No. of Actuators 4n 4 4dn 12
Underactuation n+3 4 n+6 9
xr € R3
zp € R33 zy € R3 Ry, € SO(3)
Yn = |Tiq; € R, R; € SO(3 T2 € R
Flat outputs qu cR V1 = {‘T&“} g %B} Vn = |:A € RS"(ﬁ)] I TiseR |’
i€{27""n}7 kaR TQSGR
ke{l,---,n} ke{l,---,n} P €R
ke{1,2,3}
No. of Flat outputs 4in 4 in 12

TABLE II:

Mass of quadrotorsy;
Mass of loadm,

Inertia of quadrotors/;

Inertia of load,J;,

1
2
3
Length of cablesL;

TABLE IlI: Parameters for simulation and experiments.

For dynamic trajectory generation and for numerical simu__,
lation, we consider the system with properties given in @ablE
[T corresponding to our experimental system in SedfioBlV

From the choice of the flat output trajectories for the temsio 2
vector, specifically[(28)[(29), we note that is constantj.e.,
the unit-vector from the % quadrotor to the load attachment
point does not change with time, irrespective of the loas

Comparison between multiple cases of quadrotoams$porting a suspended load.

0.5 Kg
0.225 Kg
232 0 0
0 232 0]1073 Kgm?
0 0 4
21 0 0
0 187 0 |1072Kgm?
0 0 397
—0.42 —0.27 0] m
048 —0.27 0] m

—0.06 055 0| m
Im,ie{1,23}

-05 4

15

Nos

y (m) Time Period (s)

trajectory. Similarly, from[(30)¢g> can only vary in ther — z (b)

plane. However, from[{(26), since the load trajectory has
motion alongz, this variation is minimal. This leaveg free
to vary depending on the load trajectory. Figlie 5 illustsat
how the trajectory of Quadrotor 3 changes for different dite
frequencies of the load trajectory specified[in]l(26). At fow
frequencies, the quadrotor trajectory mimics that of thed|o
albeit with an offset, but as the frequency increases, t
trajectory of the quadrotor dramatically changes. Fiduge

IIl—(?g. 5: Trajectories for Quadrotor 3 as the time period oflloa
oscillation is varied froml0 seconds tol second. The first
figure shows the variation betweéfi and3.5 seconds, which

is used in experiments later on, and the second figure shows
the variation fron8.5 to 1 second. Note that the the trajectories
Rgcome far more aggressive as the desired load trajectoey ti
geriod goes froml 0 seconds td second.

illustrates the trajectory of Quadrotor 3 at discrete femtpies g Experimental Results
of the load trajectory whose time periods vary frdm= 10
s to T, = 3.5 s. Figure[Gb illustrates this for time periods To illustrate the validity of the proposed method of plamnin

varying fromT, to T3 = 1 s. Figure[ 6 illustrates snapshotslynamic trajectories, we consider an experimental systtm o
of a simulation of the system fdf = 10 s, and forT = 3.5 quadrotors (the Hummingbird by Ascending Technologies)
s. Note that at the faster frequency, Quadrotor 3 (red) hasad a suspended rigid-body load, such as the one shown in
significantly different motion than before to ensure that thFigure[8. The parameters for this system are the as given in
load moves faster to track the higher frequency trajectory. Table[Il. We will consider the dynamic motion as prescribed
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Fig. 6: Stick figure illustration of simulation of the 3-quatbr
cable-suspended rigid-body load for the cases ofi{a} 10

s, (b)T = 3.5 s. Note the aggressive trajectory for Quadrotor
3 (red), and the orientations of the other two quadrotors for
the higher frequency load trajectory case. A time trajgctor
of Quadrotor 3 for these two cases is shown on the extremes

(bright red) of the plot in FigurE5a . Fig. 8. A snapshot of the experimental setup of the
three quadrotors carrying a load. Various parameters
for this setup are enumerated in Tallel Ill. Experimen-

o S S S S S S S S tal videos are available at http://youtu.be/~-HAPFrfL400,
08 Case (a) http://youtu.be/byLwfnhrbw.

Z o8
0.76

m— Quadrotor 1
Quadrotor 2
m— Quadrotor 3

0.74
8% 1 1 1 1 1 1 1 1
0.82
08 Case (b)
Z 0.78
0.76 -

O —

Case (c) /\

NS

whereq is defined as,

_
=57
Remark 9. This definition ofa ensures that the frequency
of the load trajectory smoothly changes frofnto fo in T
seconds, as changes frond to 0.5.

@ (33)

0.95

Next, we present two experiments for this same desired
load trajectory. The first experiment involves trajectotsins
for the quadrotors derived from a quasi-static modell |4, 5],
where the load velocity, acceleration and higher deriestizre
assumed to be zero for all time. This results in a trajectory
for the quadrotors that has the same shape as the load tra-
jectory, although its spatially shifted. The second expent
involves trajectory plans derived from a dynamic model, ighe
the quadrotor trajectories are computed using the diffeen
Fig. 7. Tensions in the cables attached to the quadrotdrstness presented in Sectioh II.
as computed from the differential-flatness for the case ofwe consider the load-trajectory smoothly varying from
trajectory generation for the cases (a) quasi-static maael  f, = 1/Ty to fo = 1/Ty in T seconds, withT; = 10 s,
dynamic model for (b)I' = 10's, ()7 = 3.5 s, and (d) 7, = 3.5 s and7 = 120 s. This choice ensures that the
T =1 s. Note that the cable tensions in all cases is positivébtained trajectory is within the sensor and actuator &tiohs
Moreover, for the fast dynamic load trajectory, the peakiem of the experimental system. In the experiments, the planned
in Quadrotor 3 cable is ten times higher than for the slowejectories for the quasi-static and dynamic models serve
load trajectory cases. as inputs to a quadrotor position controller based lon [12].
The experiments are carried out with position and orieoiati
feedback for the quadrotors from a Vicon motion capture
the flat outputs in[{26)5(31). However, instead of the loadystem. The load position is also tracked through the motion
trajectory being at a discrete frequency, we will consider t capture system, however it is not used in feedback control.
load trajectory smoothly increasing in frequency frginto Figureld illustrates the performance of the two experimegts

Case (d)

|
05T
Time

N

W NN

f» Hz in T seconds. Such a trajectory is given by, comparing the error in tracking the desired load trajectbry
both experiments, the error increases with frequency. Mewe
0 the load tracking error is abowd00% — 400% lower in the
zr(t) = |Aycos(2m((1 —a)fi +af2)t)| ,0<t < T, dynamic case. In the quasi-static case, there is a big phase
A, sin (27((1 — @) f1 + afo)t) difference in tracking the load trajectory, leading to t&rg

(32) errors. Moreover, in the dynamic case, the tracking error ca


http://youtu.be/-HAPFrfL4o0
http://youtu.be/byL_wfnhrbw

Desired Actual

enabling planning of dynamically feasible trajectories the
payload under the cases of positive tensions and also non
negative tensions (allowing for zero tensions) in the cable
We presented numerical and experimental results illistrat

— Quadrotor the superior performance of this method, compared to earlie
16 Quadrotor 2 . . . .
= Quadrotor methods based on quasi-static models. Future work will be di
N Load
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rected towards designing controllers that use the loadiposi
and orientation as feedback to further improve performance
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REFERENCES

[1] V. Kumar and N. Michael, “Opportunities and challenges
with autonomous micro aerial vehicledjit. J. Robot.
Res, vol. 31, no. 11, pp. 1279-1291, Aug. 2012.

[2] R. M. Murray, “Trajectory Generation for a Towed Ca-

ble System Using Differential Flatness,” IRAC World

"“‘“‘AUUU“UU Congress San Francisco, CA, July 1996.

o IRttt A ALl Sl DRSNS B [3] K. Sreenath, N. Michael, and V. Kumar, “Trajectory
2 Tima () 8 100 120 generation and control of a quadrotor with a cable-
suspended load — a differentially-flat hybrid system,” in

ICRA Karlsruhe, Germany, May 2013, pp. 4873—-4880.

[4] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning

and control for cooperative manipulation and transporta-

tion with aerial robots,Int. J. Robot. Resvol. 30, no. 3,

pp. 324-334, Sept. 2010.

[5] N. Michael, J. Fink, and V. Kumar, “Cooperative ma-

nipulation and transportation with aerial robotéjiton.

Robot, vol. 30, no. 1, pp. 73-86, Sept. 2011.

M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Au-

tonomous transportation and deployment with aerial

robots for search and rescue missionk,Field Robot.

vol. 28, no. 6, pp. 914-931, 2011.

I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-

UAV Cooperation and Control for Load Transportation

and Deployment,J. Intell. Robot. Systvol. 57, no. 1-4,

pp. 417-449, Aug. 2010.

M. Fliess, J. levine, P. Martin, and P. Rouchon, “Flatness

and defect of non-linear systems: introductory theory and

examples,Int. J. Contro| vol. 61, pp. 1327-1361, 1995.

R. M. Murray, M. Rathinam, and W. Sluis, “Differential

Flatness of Mechanical Control Systems : A Catalog of

V. CONCLUSION Prototype Systems,” iIASME Int. Mech. Eng. Congress

We have addressed the problem of dynamic coopera- 1995, pp. 1-9.
tive transportation of a cable-suspended payload by neltid10] D. Mellinger and V. Kumar, “Minimum snap trajectory
quadrotors. This is the first study of the entire dynamical —9eneration and control for quadrotors,” ICRA May
problem that simultaneously addresses the problems ofrunde 2011, pp. 2520-2525.
actuation and unilateral constraints, resulting in theettmw [11] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid
ment of a general and comprehensive framework for planning dynamical systemsEEE Control Syst. Mag.vol. 29,
dynamically feasible trajectories for the multiple quadro no. 2, pp. 28-93, April 2009.
point-mass and rigid-body payload system. In particulae, Wwl2] T. Lee, M. Leok, and N. H. McClamroch, “Geometric
have established that both these systems are differgntiall  Tracking Control of a Quadrotor UAV on SE ( 3)," in
flat, and moreover are also differentially-flat hybrid sysse CDC, Atlanta, GA, 2010, pp. 5420-5425.

Quasi-Static
0.8 || =====Dynamic
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Fig. 9: Norm of the error between the desired and actual
load trajectories for the two experiments with trajectolsns
generated for quasi-static and dynamic models respegtivel
The frequency of the desired load trajectory increases with
time.

be further reduced by using feedforward moments for théG]
guadrotor that are computed from the differential flatnéss.
even better load tracking, we will need to make use of the load
position as feedback by designing a controller that trables t
position and orientation of the load. This is beyond the ecop[ ]
of this paper, and will be carried out in the near future.
Figure[10 illustrates the desired and experimentally zedli
trajectories for the three quadrotors and the load for the e)T8]
periment with trajectory plans derived from a dynamic model
Note that the Quadrotor 3 trajectory dramatically changes a
the frequency of the desired load trajectory increases) that [9]
the load moves faster to track the higher frequency trajgcto
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