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Abstract—We address the problem of cooperative transporta-
tion of a cable-suspended payload by multiple quadrotors. In
previous work, quasi-static models have been used to study this
problem. However, these approaches are severely limited because
they ignore the payload dynamics, and do not explicitly model
the underactuation in the control problem. Thus, there are no
guarantees on the payload trajectory or the cable tensions, which
must be non negative. In this paper, we develop a complete
dynamic model for the case when payload is a point load and for
the case when the payload is a rigid body. We show in both cases
the resulting system is differentially flat when the cable tensions
are strictly positive. We also consider the case where the tensions
are non negative (including the case with zero tensions) and
establish that these systems are differentially flat hybrid systems
by considering the switching dynamics induced by the unilateral
tension constraints. We use the differential flatness property to
find dynamically feasible trajectories for the payload+quadrotors
system. We show using numerical and experimental methods that
these trajectories are superior to those obtained by quasi-static
models.

I. I NTRODUCTION

Aerial robotics is a growing field with a wide range of
civil and military applications. The last five years have seen
the maturation of micro aerial vehicles, especially quadrotors,
that range from tens of centimeters to several meters with
payloads that are limited to less than several kilograms [1].
While these robots can maneuver in highly-constrained, three-
dimensional environments, they are limited in terms of their
payload carrying capacity. However, these robots can carry
payloads beyond the capacity of individuals by collaborating
in manipulation and transportation tasks. Teams of robots
can be used for transportation in search and rescue missions,
environmental monitoring, and for surveillance tasks.

In this paper, we are particularly interested in cooperative
transportation tasks where the payload is suspended by cables
from multiple quadrotors. This task is closely related to aerial
towing, the manipulation of a payload suspended by a cable
from a moving aerial robot [2]. A single quadrotor with a cable
suspended load has been studied in [3]. Cooperative aerial
towing has also been studied, in particular by [4, 5, 6, 7].
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Fig. 1: Load being transported by n quadrotors.

In all these cases, equilibrium position and orientation ofthe
suspended payload are configurations in which the gravity
wrench is equilibrated by the wrenches exerted by the cables.
From a static analysis, it is clear that at least three cablesare
required to suspend the payload in any desired configuration.
Indeed this case has been studied in detail by [4, 5]. However,
all these approaches are based on quasi-static models, withthe
assumption that the load (and therefore the quadrotors) have
motions that give rise to negligible inertial forces. However, as
seen in the experimental results and videos in these papers,it is
quite clear that this quasi-static assumption is not valid.Indeed
it is impossible to make any assertions about the resulting
trajectory without explicitly modeling and analyzing the full
dynamics of the system.

We address this limitation in all previous papers by studying
the dynamics of cooperative manipulation by using a complete
dynamic model for the cases when payload is (a) a point
load; and (b) a three-dimensional rigid body. We show in both
cases the resulting system is differentially flat when the cable
tensions are strictly positive. We also consider the case where
the tensions are non negative (including the case with zero
tensions) and establish that these systems aredifferentially flat
hybrid systemsby considering the switching dynamics induced
by the unilateral tension constraints. We use the differential



flatness property to find dynamically feasible trajectoriesfor
the payload+quadrotors system. We show using numerical and
experimental methods that these trajectories are superiorto
those obtained by quasi-static models.

The rest of the paper is structured as follows. Section II
establishes the differential-flatness of then-quadrotor cable-
suspended load system, both with point-mass and rigid-body
loads. Section III presents the hybrid model for both these
systems, and establishes that these aredifferentially-flat hybrid
systems. Section IV presents numerical and experimental re-
sults for a rigid-body load carried by three quadrotors. Finally
Section V provides concluding remarks and thoughts on future
work.

II. D IFFERENTIAL FLATNESS

We will consider two systems, a point-mass load suspended
by cables fromn quadrotors, and a rigid-body load also
suspended by cables fromn quadrotors. To enable planning
dynamic trajectories of the cable-suspended load for aerial
transportation, we will demonstrate that both these systems
are differentially flat [8, 9, 2]. Differential-flatness hasbeen
employed for planning dynamic trajectories for quadrotor
systems [10]. In Section IV, we will make use the flat outputs
to plan dynamic trajectories.

Definition 1. Differentially-flat system [9]:A systemẋ =
f(x, u), x ∈ R

n, u ∈ R
m, is differentially flat if there

exists outputsy ∈ R
m of the formy = y(x, u, u̇, · · · , u(p)),

such that the states and the inputs can be expressed as
x = x(y, ẏ, · · · , y(q)), u = u(y, ẏ, · · · , y(q)), wherep, q are
finite integers.

To demonstrate the differential flatness property of the
multiple-quadrotor cable-suspended system, we first develop a
dynamical model of system based on Newton-Euler equations,
and then use this to identify a set of flat outputs.

For the two systems presented in this paper, we will make
the following assumptions,

1) Cables are massless and do not stretch.
2) Cables are attached at the quadrotor’s center of mass.
3) Air drag on the quadrotors and the load is negligible.
4) When a cable goes from being slack to taut, there is a

discrete change in the velocity of the system, and this
is modeled based on a perfectly inelastic collision.

A. Point-Mass Load

We first consider the point-mass load suspended byn ≥ 1
quadrotors as shown in Figure 2. The independent degrees of
freedom (DOF) of this system are the load position,xL ∈ R

3,
the attitude of the suspended cables,qi ∈ S2, and the attitude
of the quadrotors,Ri ∈ SO(3) (See Table I for definitions of
various symbols used in the paper.) Defining the length of the
ith cable asLi, from the geometry of how the load is attached
to the quadrotors, we have the quadrotor position,xi ∈ R

3,
given by the following kinematic relation,

xi = xL − Liqi. (1)
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Fig. 2: Point-Mass Load being transported by n quadrotors.

Using the tension in the cables,Ti ∈ R, the Euler dynamics
of the n quadrotors and the load can be easily written down
as follows,

miẍi = fiRie3 −mige3 + Tiqi, (2)

JiΩ̇i +Ωi × JiΩi =Mi, (3)

mLẍL = −
∑

Tiqi −mLge3, (4)

wheremi, Ji, fi are the mass, inertia and thrust of theith

quadrotor,mL is mass of the load, ande3 is the standard unit
vector along the z-axis of the world.

Lemma 1. (Differential-Flatness of then quadrotor, point-
mass load system,n ≥ 1.) Yn = (xL, Tiqi, ψj), for i ∈
{2, · · · , n}, j ∈ {1, · · · , n} is a set of flat outputs for then
quadrotor, point-mass load system, whereψj is the yaw angle
of the jth quadrotor.

Proof: FromxL and its higher order derivatives, the left
hand side of(4) can be determined. Next, from the knowledge
of the flat outputsTiqi, for i ∈ {2, · · · , n}, T1q1 can be
determined from(4). The unit vectorsqi = Tiqi/||Tiqi||,
and the tensionTi = Tiqi · qi can also be determined for
i ∈ {1, · · · , n}. The quadrotor positions can then be deter-
mined using(1). All remaining quantities,Ri,Ωi, fi,Mi can
be determined from knowledge ofxi, ψi and their higher-order
derivatives, since(xi, ψi) are flat outputs for a quadrotor.

Remark1. The load position,xL needs to be differentiated six
times, and the tensionsTiqi, i > 2 needs to be differentiated
four times to obtain the entire state of the system, along with
the feedforward thrusts and moments for the quadrotors.

B. Rigid-Body Load

Having established the differential-flatness of then quadro-
tor, point-mass load, we now consider a rigid body load.
First, from the geometry of how the load is attached to the
quadrotors, see Figure 1, we have the quadrotor position given
by the following kinematic relation,

xi = xL +RL(ri − Liqi), (5)

wherexL is the position of the load,xi the position of the ith

quadrotor,RL the orientation of the load,qi the unit vector
from the ith quadrotor to the attachment point on the load



mL ∈ R Mass of Load
JL ∈ R

3×3 Inertia matrix of the load with respect to the body-fixed frame
RL ∈ SO(3) The rotation matrix of the load from the body-fixed frame to the inertial frame
ΩL ∈ R

3 Angular velocity of the load in the body-fixed frame
xL, vL ∈ R

3 Position and velocity vectors of the center of mass of the loadin the inertial frame
mi ∈ R Mass ofith quadrotor
Ji ∈ R

3×3 Inertia matrix of theith quadrotor with respect to the body-fixed frame
Ri ∈ SO(3) The rotation matrix of theith quadrotor from the body-fixed frame to the inertial frame
Ωi ∈ R

3 Angular velocity of theith quadrotor in the body-fixed frame
xi, vi ∈ R

3 Position and velocity vectors of the center of mass of theith quadrotor in the inertial frame
fi ∈ R Thrust produced by theith quadrotor
Mi ∈ R

3 Moment produced by theith quadrotor
ψi ∈ R Yaw angle of theith quadrotor
qi ∈ S2 Unit vector from theith quadrotor to its attachment point on the load in body-fixed frame of the load
ri ∈ R

3 Vector form the center of mass of the load to the attachment point of the ith quadrotor to the load
Li ∈ R Length of the cable between theith quadrotor and the load
Ti ∈ R Tension in the the cable between theith quadrotor and the load
e1, e2, e3 ∈ R

3 Standard unit vector alongx, y, z axes in the world frame

TABLE I: Various symbols being used.

expressed in the body-fixed frame of the load, andri the vector
from the center-of-mass of the load to the attachment point in
the body-fixed frame of the load.

Using the tension in the cables,Ti, the Euler dynamics of
then quadrotors and the rigid-body load can be easily written
down as follows,

miẍi = fRie3 −mige3 +RLTiqi, (6)

JiΩ̇i +Ωi × JiΩi =Mi, (7)

mLẍL = −
∑

RLTiqi −mLge3, (8)

JLΩ̇L +ΩL × JLΩL =
∑

ri ×−Tiqi, (9)

wherei ∈ {1, · · · , n}, and all other symbols are as defined in
Table I.

Lemma 2. (Differential-Flatness of then quadrotor, rigid-
body load system,n ≥ 3.) Yn = (xL, RL,Λ, ψj) for j ∈
{1, · · · , n} is a set of flat outputs for then quadrotor, rigid-
body load system, whereΛ ∈ R

3n−6 satisfies,

T = Φ+W +NΛ, (10)

with T ,W defined as

T =











T1q1
T2q2

...
Tnqn,











, W = −

[

RT
L (mL(ẍL + ge3))

JLΩ̇L +ΩL × JLΩL

]

, (11)

whereΦ+, N are respectively the Moore-Penrose generalized
inverse and the kernel of

Φ =

[

I I · · · I
r̂1 r̂2 · · · r̂n

]

, (12)

with thehat map̂. : R3 → so(3) defined by the condition that
x̂y = x× y, for all x, y ∈ R

3.
Proof: Notice that(8), (9) can be written as

−

[

RT
L (mL(ẍL + ge3))

JLΩ̇L +ΩL × JLΩL

]

= Φ











T1q1
T2q2

...
Tnqn.











. (13)

From (11), we can denote the LHS of(13) by,

W =

[

Wf

WM

]

. (14)

This is, in effect, the load wrench consisting of the net force
and moment that is produced by the tensions. Further from
(11), the RHS of(13) is T . Thus(13) can be written as

ΦT =W, (15)

which is an under-determined set of equations with the general
solution given by(10). Note thatN is a 3n × (3n − 6)
matrix whose columns span the kernel ofΦ, representing the
constraints on the internal forces in the system.

From the flat outputs(xL, RL) and their higher-order
derivatives, W can be determined from(11). Further from
the flat outputΛ, Tiqi can be determined fori ∈ {1, · · · , n}
through(10). Then, the unit vectorqi = Tiqi/||Tiqi||, and the
tensionTi = Tiqi · qi can also be determined. The quadrotor
positions can then be determined using(5). All remaining
quantities,Ri,Ωi, fi,Mi can be determined from knowledge
of xi, ψi and their higher-order derivatives, since(xi, ψi) are
flat outputs for a quadrotor.

Remark2. The load position,xL needs to be differentiated six
times, and the load orientationRL and the mapped tensions
Λ need to be differentiated four times to obtain the entire state
of the system, along with the feedforward thrusts and moments
for the quadrotor.

Remark 3. When the anchor points are symmetric about the
center-of-mass of the load,i.e., when

Σri = 0, (16)

(10) can be simplified to

T =







1
n
Wf +Π−1 (WM × r1)

...
1
n
Wf +Π−1 (WM × rn)






+NΛ, (17)

where
Π =

[

−
∑n

i=1 r̂ir̂i
]

, (18)



is the second moment of distribution of the anchor points.

Remark4. We can derive a special basis forN by represent-
ing the internal forces by pairs of equal and opposite forces.
Define byuij the unit vector from anchor pointi to j, i.e.,

uij =
rj − ri

||rj − ri||
. (19)

The columns ofN can then be chosen as,
[

0 · · · uij · · · −uij · · · 0
]T
, (20)

where only the ith 3×1 component and the jth 3×1 components
are non-zero. For example, forn = 3, we have,

N9×3 =





u12 u13 0
−u12 0 u23
0 −u13 −u23



 , (21)

and,

Λ =





T12
T13
T23



 . (22)

Under this basis, a good choice forΛ(t) would beΛ ≡ 0,
which would ensure that the tensions in the cables have no
components alonguij , thereby resulting in the tension not
performing any isometric work.

Remark 5. An alternative choice forΛ would be

Λ =









T1q1 · e1
T1q1 · e2
T2q2 · e1
Tjqj









, 3 < j ≤ n. (23)

Note that there exists a diffeomorphism between the flat output
space and the state space. This implies that any motion that
can be generated through one set of flat output variables can
also be generated through another choice of the flat output
variables. The choice of flat output variables does not affect
the system motion, although some choices may be easier to use
than others for designing the trajectories and the feedforward
control.

Remark6. For the 2-quadrotor load carrying system, (n = 2),
Y2 = (xL, RL, ψk) for k ∈ {1, 2} does not form a set of
flat outputs, since there exists a degree of underactuation
corresponding to rotation about the line joining the two
contact points that can not be determined from the flat outputs.
In particular, forn = 2, one would expect(13) to be a set of six
equations in six variables, however, for this case,Φ ∈ R

6×6

is rank-deficient for allr1, r2.

Remark 7. The flat outputΛ can be so chosen such that
Ti(t) > 0, ∀t.

Table II contains a summary of the key results in this
section. It includes the number of degrees of freedom, number
degrees of underactuation, and the flat outputs for the point-
mass load withn quadrotors including the special case of
n = 1, and for the rigid-body load withn quadrotors,
including the special case ofn = 3.

III. H YBRID SYSTEM MODEL

In the previous section, we developed the dynamics
and established that then quadrotor system with either a
cable-suspended point-mass load or a rigid-body load are
differentially-flat. Now we explicitly consider the case when
the tension in any of the cables drops to zero.

If the tension in any of the cables goes to zero, or if tension
in any of the slack cables is reestablished, then the system
dynamics switches, making this a hybrid system. Without
loss of generality, we can assume that at most one cable
tension can either drop to zero or one slack cable can get its
tension reestablished to a nonzero value at any given moment.
Moreover, we can also assume that this happens sequentially1,
i.e., starting with alln cables in tension, only thenth cable
tension can drop to zero, and following this either the(n−1)th

cable tension can drop to zero or thenth cable tension can get
reestablished, and so on as illustrated in Figure 3. We denote
by Σk the continuous-time system that has slack cables for all
quadrotors with indices greater thank, i.e., Ti ≡ 0, i > k.

Furthermore, we will model the discrete transition map from
Σk to Σk−1, that occurs when a cable tension drops to zero, as
the identity map, and also enforce the tensionTi ≡ 0, i > k.
We will model the discrete transition map∆k from Σk−1 to
Σk that occurs when a tension is reestablished as an inelastic
collision (see Assumption 4), resulting in a discrete change
in velocity. Moreover, we will assume∆k is a smooth map.
The dynamics of the systemΣk for the point-mass load is as
below

Σk :































miẍi = fiRie3 −mige3 + Tiqi,

JiΩ̇i +Ωi × JiΩi =Mi,

mLẍL = −
∑

Tiqi −mLge3,

X /∈ Sk,

Ti ≡ 0, i > k

X+ = ∆k+1(X
−), X ∈ Sk

whereX is the state of the entire system, and

Sk = {X | ||xk − xL|| = Lk,
d

dt
||xk − xL|| > 0} (24)

defines the guard (using hybrid system terminology from
[11]) when the distance between thekth quadrotor and its
attachment point to the load reaches the length of the cable.

We will next demonstrate that the hybrid system under
consideration is adifferentially-flat hybrid system, as defined
below.

Definition 2. A differentially-flat hybrid systemis a hybrid
system where each subsystem is differentially-flat, with the
guards being functions of the flat outputs and their derivatives,
and moreover there are sufficiently smooth transition maps
from the flat output space of one subsystem to the flat output
space of the subsequent subsystem.

Remark 8. A differentially-flat hybrid system does not imply
all the states and inputs can be obtained by differentiatinga set

1For inelastic collisions (Assumption 4), the results do not depend on the
order in which these transitions occur.
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Fig. 3: Transition between subsystems as tension in the cable
drops to zero or is reestablished to a positive value.

of smooth flat outputs. After all, the system is hybrid, and we
expect discrete jumps in states and possibly inputs. Instead, we
mean that each subsystem is differentially flat, and that theflat
outputs of a subsequent subsystem arise as smooth functions
of the flat outputs of the current subsystem, mapped through
the transition map between the two subsystems.

Theorem 1. The multiple-quadrotor cable-suspended point-
mass load is a differentially flat hybrid system forn ≥ 1.

Proof: SupposeZn = Yn is a set of flat outputs for
then quadrotor, point-mass load system from Lemma 1. Now
suppose at some event, the tension in the cable for one of the
quadrotors becomes zero. Since the system is differentially flat,
this event is known fromZn and its derivatives. Moreover, the
new systemΣn−1 with n−1 quadrotors and load, and with a
single free quadrotor is also differentially flat since then− 1
quadrotor load system is differentially flat by Lemma 1, and
the single quadrotor is also differentially flat. Moreover,the
the transition map transforms the flat outputsZn to Zn−1 =
[

Yn−1 Yn
0

]

, whereYn−1 corresponds to the flat output of
then−1 quadrotors and load system, andYn

0 corresponds to
the flat output of thenth quadrotor.

When the tension gets re-established, we can obtain the
initial value of Zn by mapping the flat outputZn−1 and its
higher-order derivatives through the transition map∆n.

We can sequentially compose this all the way to having all
the tensions going to zero, and the load undergoing ballistic
motion.

Next, we consider the multiple-quadrotor system with a
rigid-body payload and demonstrate that this system is alsoa
differentially-flat hybrid system. The hybrid dynamics of this
system are given as,

Σk :















































miẍi = fRie3 −mige3 +RLTiqi,

JiΩ̇i +Ωi × JiΩi =Mi,

mLẍL = −
∑

RLTiqi −mLge3,

JLΩ̇L +ΩL × JLΩL =
∑

ri ×−Tiqi,

X /∈ Sk,

Ti ≡ 0, i > k

X+ = ∆k(X
−), X ∈ Sk

Theorem 2. The multiple-quadrotor with a cable-suspended
rigid-body load is a differentially flat hybrid system forn > 3.

Proof: The proof follows in a similar way to the previous
theorem forn > 3. For n = 3, the tension in the cable attached
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Fig. 4: Load being transported by three quadrotors.

to Quadrotor 3 drops to zero, and the resulting system is no
longer differentially flat by Remark 6.

IV. RESULTS

Having established the differential-flatness of then quadro-
tor, cable-suspended point-mass and rigid-body load systems,
we will demonstrate numerical and experimental results for
the rigid-body case withn = 3 quadrotors. An illustration of
this is as shown in Figure 4.

A. Numerical Results

We choose the flat outputs for then = 3 quadrotor system
with rigid-body load as,

Y3 =

























xL
RL

T1q1 · e1
T1q1 · e2
T2q2 · e1
ψ1

ψ2

ψ3

























. (25)

Following [10], we could plan a dynamic trajectory that
minimizes the6th derivative of the load position, leading to
a minimum snap trajectory for the quadrotors. However, we
consider instead a simple trajectory that serves to illustrate the
choice of flat outputs and planning in flat space. The trajectory
for the load is chosen to be an ellipse in they− z plane with
the frequencyf , given by,

xL(t) =





0
Ay cos (2πft)
Az sin (2πft)



 (26)

The other flat outputs are chosen as follows,

RL(t) ≡ I, (27)

T1(t)q1(t) · e1 ≡ (1/3)Ry(π/6)mLg · e1 (28)

T1(t)q1(t) · e2 ≡ (1/3)Ry(π/6)mLg · e2 (29)

T2(t)q2(t) · e2 ≡ (1/3)Ry(−π/6)mLg · e2 (30)

ψk(t) ≡ 0, k ∈ {1, 2, 3}. (31)



Point-mass load Rigid body load
n quadrotors 1 quadrotor n quadrotors 3 quadrotors

Independent DOF
xL ∈ R

3

q1, q2, · · · , qn ∈ S2

R1, R2, · · · , Rn ∈ SO(3)

xL ∈ R
3

q ∈ S2

R ∈ SO(3)

(xL, RL) ∈ SE(3)
q1, q2, · · · , qn ∈ S2

R1, R2, · · · , Rn ∈ SO(3)

(xL, RL) ∈ SE(3)
q1, q2, q3 ∈ S2

R1, R2, R3 ∈ SO(3)
No. of DOF 5n+ 3 8 5n+ 6 21

No. of Actuators 4n 4 4n 12
Underactuation n+ 3 4 n+ 6 9

Flat outputs
Yn =





xL ∈ R
3

Tiqi ∈ R
3

ψk ∈ R



 ,

i ∈ {2, · · · , n},
k ∈ {1, · · · , n}

Y1 =

[

xL ∈ R
3

ψ ∈ R

]

Yn =







xL ∈ R
3

RL ∈ SO(3)
Λ ∈ R

3n−6

ψk ∈ R






,

k ∈ {1, · · · , n}

Y3 =















xL ∈ R
3

RL ∈ SO(3)
T12 ∈ R

T13 ∈ R

T23 ∈ R

ψk ∈ R















,

k ∈ {1, 2, 3}
No. of Flat outputs 4n 4 4n 12

TABLE II: Comparison between multiple cases of quadrotors transporting a suspended load.

Mass of quadrotors,mi 0.5 Kg
Mass of load,mL 0.225 Kg

Inertia of quadrotors,Ji





2.32 0 0
0 2.32 0
0 0 4



 10−3 Kg m2

Inertia of load,JL





2.1 0 0
0 1.87 0
0 0 3.97



 10−2 Kg m2

r1
[

−0.42 −0.27 0
]

m
r2

[

0.48 −0.27 0
]

m
r3

[

−0.06 0.55 0
]

m
Length of cables,Li 1 m, i ∈ {1, 2, 3}

TABLE III: Parameters for simulation and experiments.

For dynamic trajectory generation and for numerical simu-
lation, we consider the system with properties given in Table
III, corresponding to our experimental system in Section IV-B.

From the choice of the flat output trajectories for the tension
vector, specifically (28), (29), we note thatq1 is constant,i.e.,
the unit-vector from the 1st quadrotor to the load attachment
point does not change with time, irrespective of the load
trajectory. Similarly, from (30),q2 can only vary in thex− z
plane. However, from (26), since the load trajectory has no
motion alongx, this variation is minimal. This leavesq3 free
to vary depending on the load trajectory. Figure 5 illustrates
how the trajectory of Quadrotor 3 changes for different discrete
frequencies of the load trajectory specified in (26). At slower
frequencies, the quadrotor trajectory mimics that of the load,
albeit with an offset, but as the frequency increases, the
trajectory of the quadrotor dramatically changes. Figure 5a
illustrates the trajectory of Quadrotor 3 at discrete frequencies
of the load trajectory whose time periods vary fromT1 = 10
s to T2 = 3.5 s. Figure 5b illustrates this for time periods
varying from T2 to T3 = 1 s. Figure 6 illustrates snapshots
of a simulation of the system forT = 10 s, and forT = 3.5
s. Note that at the faster frequency, Quadrotor 3 (red) has a
significantly different motion than before to ensure that the
load moves faster to track the higher frequency trajectory.
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Fig. 5: Trajectories for Quadrotor 3 as the time period of load
oscillation is varied from10 seconds to1 second. The first
figure shows the variation between10 and3.5 seconds, which
is used in experiments later on, and the second figure shows
the variation from3.5 to 1 second. Note that the the trajectories
become far more aggressive as the desired load trajectory time
period goes from10 seconds to1 second.

B. Experimental Results

To illustrate the validity of the proposed method of planning
dynamic trajectories, we consider an experimental system of
quadrotors (the Hummingbird by Ascending Technologies)
and a suspended rigid-body load, such as the one shown in
Figure 8. The parameters for this system are the as given in
Table III. We will consider the dynamic motion as prescribed
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Fig. 6: Stick figure illustration of simulation of the 3-quadrotor
cable-suspended rigid-body load for the cases of (a)T = 10
s, (b)T = 3.5 s. Note the aggressive trajectory for Quadrotor
3 (red), and the orientations of the other two quadrotors for
the higher frequency load trajectory case. A time trajectory
of Quadrotor 3 for these two cases is shown on the extremes
(bright red) of the plot in Figure 5a .
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Fig. 7: Tensions in the cables attached to the quadrotors
as computed from the differential-flatness for the case of
trajectory generation for the cases (a) quasi-static model, and
dynamic model for (b)T = 10 s, (c) T = 3.5 s, and (d)
T = 1 s. Note that the cable tensions in all cases is positive.
Moreover, for the fast dynamic load trajectory, the peak tension
in Quadrotor 3 cable is ten times higher than for the slower
load trajectory cases.

the flat outputs in (26)-(31). However, instead of the load
trajectory being at a discrete frequency, we will consider the
load trajectory smoothly increasing in frequency fromf1 to
f2 Hz in T seconds. Such a trajectory is given by,

xL(t) =





0
Ay cos (2π((1− α)f1 + αf2)t)
Az sin (2π((1− α)f1 + αf2)t)



 , 0 ≤ t ≤ T,

(32)

Fig. 8: A snapshot of the experimental setup of the
three quadrotors carrying a load. Various parameters
for this setup are enumerated in Table III. Experimen-
tal videos are available at http://youtu.be/-HAPFrfL4o0,
http://youtu.be/byLwfnhrbw.

whereα is defined as,

α =
t

2T
. (33)

Remark 9. This definition ofα ensures that the frequency
of the load trajectory smoothly changes fromf1 to f2 in T
seconds, asα changes from0 to 0.5.

Next, we present two experiments for this same desired
load trajectory. The first experiment involves trajectory plans
for the quadrotors derived from a quasi-static model [4, 5],
where the load velocity, acceleration and higher derivatives are
assumed to be zero for all time. This results in a trajectory
for the quadrotors that has the same shape as the load tra-
jectory, although its spatially shifted. The second experiment
involves trajectory plans derived from a dynamic model, where
the quadrotor trajectories are computed using the differential
flatness presented in Section II.

We consider the load-trajectory smoothly varying from
f1 = 1/T1 to f2 = 1/T2 in T seconds, withT1 = 10 s,
T2 = 3.5 s andT = 120 s. This choice ensures that the
obtained trajectory is within the sensor and actuator limitations
of the experimental system. In the experiments, the planned
trajectories for the quasi-static and dynamic models serve
as inputs to a quadrotor position controller based on [12].
The experiments are carried out with position and orientation
feedback for the quadrotors from a Vicon motion capture
system. The load position is also tracked through the motion
capture system, however it is not used in feedback control.
Figure 9 illustrates the performance of the two experimentsby
comparing the error in tracking the desired load trajectory. In
both experiments, the error increases with frequency. However,
the load tracking error is about300% − 400% lower in the
dynamic case. In the quasi-static case, there is a big phase
difference in tracking the load trajectory, leading to large
errors. Moreover, in the dynamic case, the tracking error can

http://youtu.be/-HAPFrfL4o0
http://youtu.be/byL_wfnhrbw


−1 −0.5 0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

−1 −0.5 0 0.5 1
 

 

z
(m

)

y (m)y (m)

Desired Actual

Quadrotor 1
Quadrotor 2
Quadrotor 3
Load
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load trajectories for the two experiments with trajectory plans
generated for quasi-static and dynamic models respectively.
The frequency of the desired load trajectory increases with
time.

be further reduced by using feedforward moments for the
quadrotor that are computed from the differential flatness.For
even better load tracking, we will need to make use of the load
position as feedback by designing a controller that tracks the
position and orientation of the load. This is beyond the scope
of this paper, and will be carried out in the near future.

Figure 10 illustrates the desired and experimentally realized
trajectories for the three quadrotors and the load for the ex-
periment with trajectory plans derived from a dynamic model.
Note that the Quadrotor 3 trajectory dramatically changes as
the frequency of the desired load trajectory increases, such that
the load moves faster to track the higher frequency trajectory.

V. CONCLUSION

We have addressed the problem of dynamic coopera-
tive transportation of a cable-suspended payload by multiple
quadrotors. This is the first study of the entire dynamical
problem that simultaneously addresses the problems of under-
actuation and unilateral constraints, resulting in the develop-
ment of a general and comprehensive framework for planning
dynamically feasible trajectories for the multiple quadrotor
point-mass and rigid-body payload system. In particular, we
have established that both these systems are differentially
flat, and moreover are also differentially-flat hybrid systems,

enabling planning of dynamically feasible trajectories for the
payload under the cases of positive tensions and also non
negative tensions (allowing for zero tensions) in the cables.
We presented numerical and experimental results illustrating
the superior performance of this method, compared to earlier
methods based on quasi-static models. Future work will be di-
rected towards designing controllers that use the load position
and orientation as feedback to further improve performance.
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