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Abstract—Kinematic motion planning often requires a notion
of “distance” between configurations. Euclidean distances on
a parameter space are easy to compute, but can drastically
distort the effort required to change configuration. Here, we
present a framework for characterizing this distortion, based
on principles adopted from the cartographic community, and
a method for transforming configuration coordinates to better
represent actuation costs. As a demonstration of this approach,
we derive a true configuration distance metric for an important
class of locomoting systems: low Reynolds number swimmers.
Applying our cartographic coordinate transformation to these
systems both provides intuition for previous numerical results,
and allows direct geometric comparison between systems with
heterogeneous morphology.

I. INTRODUCTION

In motion planning and locomotion analysis, it is often
useful to consider the “distance” between two configurations
or the “length” of a given trajectory through the configuration
space. These quantities are often defined by a simple Euclidean
metric on the system parameters, but several limitations make
this approach unsatisfactory for many applications. First, it in-
herently requires the determination of scaling factors to relate
heterogeneous configuration parameters, such as translation
and rotation. Second, it includes an often-false underlying
assumption that the costs for changing configuration are both
uniform and orthogonal — i.e., that they depend neither on the
current configuration nor on any coordination between changes
in different parameters.

These problems bear a strong resemblance to map projection
issues considered in theoretical cartography, a domain of
differential geometry that has evolved largely independently
from those of geometric mechanics and robotics. Drawing on
established practices from the cartographic community [1],
[2], we have developed a means for representing how given
parameterizations distort effort metrics on the configuration
space and then reparameterizing the shape spaces to optimally
flatten these metrics. Such reparameterization ensures that the
shape space is faithfully represented for plotting or sampling
purposes, in much the same way that certain maps are more
accurate than others at representing the surface of the globe.

As a demonstration of this cartographic approach, we apply
it to an important class of systems: low Reynolds number
swimmers. This class incorporates most micro-organisms, and
has been the target of increasing interest in the robotics [3],
biological [4], and applied mechanics [5]-[7] communities.
For these systems, we first introduce a power-based con-
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Fig. 1: Model coordinates

figuration distance metric that directly corresponds to the
energy dissipated while changing shape. Working with this
metric allows for true comparison of configuration distances
and trajectory lengths, abstracting away the need to consider
pacing along trajectories.

We finish the paper by taking the geometric study of
locomotion beyond simple articulated systems and apply it to
systems with continuous curvature, representing either truly
flexible systems or highly-articulated systems coordinating
their joints into fundamental deformation modes. By applying
the dissipation metric and cartographic reparameterization, we
directly compare the locomotive efficiencies of articulated
and continuous swimmers both in general and for specific
optimized strokes.

II. GEOMETRIC MECHANICS FOR LOCOMOTION

The analysis in this paper draws on a geometric mechanics
locomotion framework that has rigorous theoretical roots in
differential geometry [8], but in our work, we use the vec-
tor calculus terminology introduced in [9], [10] for broader
accessibility.

A. The Reconstruction Equation and the Local Connection

When analyzing a locomoting system, it is convenient
to separate its configuration space () (i.e. the space of its
generalized coordinates ¢) into a position space G and a shape
space M, such that the position g € G locates the system in
the world, and the shape » € M gives the relative arrangement
of the particles that compose it.! For example, the position of
the three-link system in Fig. 1(a) is the location and orientation

'In the parlance of geometric mechanics, this assigns @ the structure of a
(trivial, principal) fiber bundle, with G the fiber space and M the base space.



of the middle link, g = (x,y,0) € SE(2),> and its shape is
parameterized by the two joint angles, r = (a1, a2).

With this separation, locomotion is readily seen as the
means by which changes in shape (such as strokes, gaits,
or wingbeats) affect the position. The geometric mechanics
communities in robotics and physics [8]-[14] have studied this
process with the development of the reconstruction equation
and the local connection, tools for relating the body velocity
of the system, &, i.e. its longitudinal, lateral, and rotational
velocity as depicted in Fig. 1(b), to its shape velocity, r, and
accumulated momentum.

For systems that are sufficiently constrained or uncon-
strained, the generalized momentum drops out and the system
behavior is dictated by the kinematic reconstruction equation,

§=—A(r)7r, (1)

in which the local connection A acts as a kind of Jaco-
bian [10], mapping from velocities in the shape space to the
corresponding body velocity. This kinematic condition has
been demonstrated for a wide variety of physical systems,
including those whose behavior is dictated by conservation
of momentum [14], [15], non-holonomic constraints such as
passive wheels [8], [13], [14], [16], and fluid interactions at
the extremes of low [17]-[19] and high [18]-[21] Reynolds
numbers. Experimental results also suggest that sandswim-
ming [22] is largely kinematic, though locomotion in this
regime has yet to be incorporated into the body of geometric
mechanics literature.

B. Low Reynolds Number Swimming

In this paper, we are particularly interested in locomotion at
low Reynolds number, i.e., where drag forces dominate inertial
forces. This situation most commonly arises for systems swim-
ming at very small scales, but also describes some terrestrial
locomotion systems with viscous friction. To derive the local
connections for these systems, we draw on the resistive force
model we described in [19], based on [6], [7], [18] and
summarized below.

At their heart, geometric models for low Reynolds number
locomotion are built on two key assumptions. First, that the
drag forces are linearly related to the system’s body and shape
velocities. Second, that the large drag forces settle the system
to its terminal velocity on a much faster time scale than that of
any inertial accelerations, so the net forces on the system can
be taken as zero for all time. Together, these conditions impose
a Pfaffian constraint on the system’s generalized velocity,
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in which the matrix w that maps the velocities to the net forces
on the body frame depends only on the shape r. By separating

2SE(2) is the set of all translations and rotations in the plane.

w into two sub-blocks, w = [wa?’, wgw}, it is straightforward
to rearrange (2) into
-1 .
§ = —w; wor, 3)

revealing the local connection as A = w; *ws.

The w matrix is generated by calculating the local drag
forces on each portion of the body, then transforming these
forces into force-moment pairs acting on the body frame and
extracting the coefficients corresponding to each component
of the generalized velocity. In general, these drag forces
are found by solving for Stokes flow around the swimmer;
for slender bodies, it is convenient to use Cox theory [23],
which first finds the drag on the system as if the particles in
the body were independently moving through the fluid, and
then iteratively incorporates the wake-coupling interactions
between the particles.

In practice, these wake-coupling effects only play a major
role when the slender body folds in tightly on itself. As such
tightly folded shapes turn out to be inherently inefficient for
locomotion, the higher-order terms can be neglected, leaving
only the first-order resistive-force terms. The relative drag
coefficients in the directions tangential and normal to the
swimmer’s body are a function of the slenderness ratio, with
the normal coefficient approaching a maximum value of twice
the tangential coefficient as the swimmer approaches zero
thickness. An example of integrating these forces to find
the local connection for a three-link low Reynolds number
swimmer is given in [19].

C. Integrating Motion

The reconstruction equation (1) is a differential equation
relating the evolution of the system’s position to its trajectory
through shape space. This equation can be interpreted as a
process model for simulating locomotion, but its real power
lies in the way the structure of the local connection captures
the locomotive capabilities of the system. In particular, the
net displacement for a gait (a closed trajectory in the shape
space) can be closely approximated by the area integral of the
curvature form (Lie bracket) [20] of the local connection over
the region of the shape space enclosed by the gait. Figure 2
shows two such gaits, overlaid on the x component of the
curvature form corresponding to the low Reynolds number
dynamics discussed above. Historically, the error dynamics of
this approximation meant that it was regarded as only useful
for small-amplitude gaits or certain special cases [20]. In our
recent work [19], [24], however, we have demonstrated that
optimizing the choice of coordinates can significantly improve
the error performance, and successfully applied the area rules
to gaits with joint motions in excess of 47 radians.

D. Optimal Strokes

The curvature functions provide some key insights into
optimal stroke patterns for a low Reynolds number swimmer
found in [7]. Figure 2 shows the maximum-displacement and
-efficiency strokes found in that paper plotted against the x
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Fig. 2: The efficiency-optimal stroke for the three-link swimmer found in [7],
overlaid on a contour plot of the x row of the curvature of the local connection.
Over each gait, the net displacement per cycle is the integral of the curvature
over the enclosed region.

component of the swimmer’s constraint curvature. Immedi-
ately, we see that the maximum-displacement stroke follows
the zero-contour of the function, thus maximizing displace-
ment integral. The optimal-efficiency stroke cuts across the
ends of the negative region (the inclusion of which would
increase the displacement per cycle), exchanging these low-
yield regions for a shorter stroke length; it is more efficient
to execute multiple high-yield cycles than to significantly
increase the cost of each cycle for little gain. Similarly, this
stroke cuts very slightly into the positive regions of the x
function; the slight positive inclusion not being significant
enough to justify the extra path-length in the shape space
required to completely avoid the positive region.

III. POWER-NORMALIZED COORDINATES

In the discussion of the optimal stroke in §II-D, the cost
of the stroke is implicitly taken as the path-length of the
stroke through the joint-angle space of the system. While
this metric appears reasonable for a symmetric system with
identical joints, closer consideration immediately raises serious
questions with regard to its suitability: Does the cost to change
shape depend on the current shape? Are the joint costs truly
independent, or does the motion of one joint help or impede
the motion of the other? How can the costs to change shape
of two systems with different geometries be compared?

These questions bear strong resemblance to the fundamental
question in cartography: Does a given map projection accu-
rately represent the world? The first two questions correspond
respectively to how well the projection preserves relative scale
across the map and how well it minimizes distortion and
preserves angles. The cartographical analog of the last question
is less commonly encountered in practice, but would appear
in a comparison of maps of dissimilar objects, such as planets
of different size or irregularly-shaped asteroids.

Cartographers have developed powerful tools to address
these issues and identify accurate map projections. Applying
them to our locomoting systems provides shape-space repa-
rameterizations in which path-length closely corresponds to
energy usage. In addition to improving the usefulness of the
curvature functions in identifying and rationalizing optimal
strokes, this normalization directly enables broad efficiency

characterizations between systems with very different mor-
phologies.

A. Distance metrics

The first step to adapting cartographical approaches to our
kinematics problems is a basic understanding of distance
metrics in mapping. The most commonly encountered distance
metric is the familiar Euclidean distance D between two points
in R? (the uniform plane),

Dg = +/Az2 4+ Ay2. ()

This metric is a special case, in that the vector-space nature
of the plane allows it to be explicitly defined for points a
finite distance apart. A more general way to define Euclidean
distance is to relate differential changes in x and y to the
resulting differential arclength ds traveled by the system,

dsg = \/da? + dy?, )

and then take distance as the arclength of the shortest path
between two points. Such shortest paths are termed geodesics,
representing the “straightest” lines through the space (and,
for this Euclidean example, are straight in the commonly
understood sense).

In differential geometry, ds is referred to as the line element
or “unit infinitesimal length element” for the Euclidean plane.
Its square is the first fundamental form of the space, and can
be represented quadratically as

dsg = da® + dy* = [da; dy] [1 0] [dx] , (6
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where My is the metric tensor corresponding to the Euclidean
metric. Its status as an identity matrix reflects the fact that dx
and dy contribute in equal and unit amounts to ds.

Measuring distances on a sphere is less straightforward.

The meridians converge near the poles, causing the influence
of longitude on the position to drop away as the cosine of
the latitude. Although it is possible to define a Euclidean-
distance-style metric on the sphere (the great-circle distance),
for the purposes of studying map distortion it is more useful
to consider the local distance metric. For the unit sphere S2,
parameterized by longitude A and latitude ¢, the line element
is

dss = \/(cos(¢)dN)2 + dep2, (7)
and the first fundamental form and metric tensor are thus
32 Of [dX
ds? = [d/\ d¢} cos™(¢) ) 8)
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Great circles are the geodesics defined by this metric: the
section of a great circle connecting two points on the sphere
minimizes [ dss over all possible paths between them, and
thus defines the distance between them.



B. Distance metrics in the shape space

Returning to mechanical systems, the most straightforward
way to measure the distance between shapes or the “length”
of a shape change trajectory is via the Euclidean metric on
the space of joint angles,

1 d
ds? = da? + da = [dal dag} [ 0] [ 0‘1] ()
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As previously noted, this metric only considers joint motion,
and not the effort required to produce that motion. Happily, for
many systems, we can define distance metrics on the shape
space that directly correspond to such effort — for example,
the inertia tensor of a mechanical system with Lagrangian
dynamics induces a metric whose geodesics correspond to
minimum energy paths between configurations [25].

At low Reynolds numbers, the dissipation forces from fluid
drag are much larger than any inertial forces on the system, and
the inertia tensor is thus not a physically meaningful configura-
tion metric for systems in viscous regimes. The rate-dependent
nature of these dissipative forces has led previous investiga-
tions of low Reynolds number swimming (e.g., [6], [7]) to
calculate the cost of motion along a given shape trajectory as
a pacing-dependent time integral, with a secondary calculation
to determine the optimal pacing. We have found, however, a
means of turning the dissipation forces into a configuration
metric in which arclength is a pacing-independent measure of
the effort required by a shape trajectory, and whose geodesics
correspond to minimum-effort changes in shape.

To find this metric, we start by noting that the linear
relationship between force and velocity that underlies (2)
also generates a linear relationship between the torques 7~
on each joint and the generalized velocities. Incorporating the
relationship between body and shape velocities from (1) allows
the elimination of the body velocity terms in this equation,
leaving the torque as

T = fla)d, (10)

where f is a symmetric 2 X 2 matrix whose entries are
functions of the system shape. The power p dissipated through
the joints is the dot product of their velocities and torques,
p=c- T, or, combined with (10),

(1)

The quadratic nature of (11) bears a strong resemblance
to the metric tensor formulas above. By separating & into
time and angular differentials and rearranging terms, we can
bring (11) explicitly into this form as

p=a’ fla)a.

ds; = p dt* = {dal da2] fla) [dm] ) (12)
da2

My

where f now takes on the additional role of a metric tensor,
encoding the effort required to move through the space. The

line element for this space,

ds, = /p dt,

initially appears somewhat odd, containing both time and the
square root of power in a length definition. It does, however,
have an intuitive physical interpretation: reaching points that
are farther away either takes longer or requires moving at
increased speed, and power is proportional to velocity squared.

A key benefit to considering shape changes in the power-
dissipation coordinates is that it abstracts out much of the
need to consider pacing within a stroke. Becker et al. [6]
showed that for any given cyclic frequency, the optimal pacing
is the one in which the dissipated power is held constant. This
optimal pacing directly corresponds to moving through the
shape space with constant speed ds,/dt. Thus, by measuring
the input costs of strokes by their s, = \/p(At) length, we
can make fundamental, pacing-free comparisons of their input
costs.

13)

C. Tissot’s indicatrix

Equirectangular map projections, such as that in Fig. 3,
take the latitude and longitude as evenly spaced points on a
grid. In doing so, they implicitly apply the Euclidean metric
in (6) to points on the sphere, in place of the natural spherical
metric in (8). This exchange of metrics severely impacts our
perception of the world — while we can of course compute
distances and path-lengths, straight lines on the map are not
the shortest paths on the sphere, and different regions of the
map are stretched out of proportion with each other. Similarly,
the distance metric in (12) corresponds to a (generally) non-
flat manifold.?> Representing the shape space of the three-link
swimmer as an («q,a) grid, as in the plots in Fig. 2, thus
distorts both the shapes of the functions and the relationship
between effort and pathlength.

Tissot’s indicatrix [1] illustrates the extent of these distor-
tions by showing how they transform (infinitesimal) circles
into ellipses at different points in the parameter space. In
the equirectangular projection in Fig. 3, there is no distortion
at the equator and indicatrices there are perfect circles. The
distortion increases with the latitude, stretching the indicatrices
(and the map features) longitudinally. Note that this stretch is
inversely proportional to the metric — as the top left entry of
M becomes smaller, it “costs less distance” to change the
longitude by a given amount.

We calculate the indicatrices from the singular value decom-
position of the metric tensor. The metric tensor is symmetric,
so this operation takes the form svd(M) = USUT, where the
columns of U are unit vectors encoding the principle stretch
directions [2], i.e., the directions in which the distance metric
is longest and shortest. The values in the diagonal matrix X
are the magnitudes of ds? along the corresponding columns of
U, and thus are the inverse squares of the principle stretches
7, the magnitudes of deformation along these axes. From these

3Roughly, a space that is itself curved through higher dimensions.
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Fig. 3: Tissot’s indicatrices for the world map and three-link swimmer’s power dissipation metric, shown in both the original and relaxed coordinates.

properties, we can define a Tissot transformation matrix T' of
a metric,

T=Ux"2U7, (14)
that encodes the local deformation produced by the projection.
We should note here that although the cartographic literature
uses a similar approach to finding the principal stretches, we
have not been able to find examples where 7' is explicitly
constructed, with the authors in that field content to note that
U and ¥z respectively give the directions and magnitudes
of the semi-axes of the indicatrices.

Applying Tissot’s indicatrix to the three-link swimmer, as
in the middle-bottom plot in Fig. 3 shows how distances cal-
culated according to the power metric M, are distorted when
the system is represented in joint angle coordinates: First,
the major axes of the indicatrices are all in the (4+aq, —a2)
direction, indicating that this representation generally stretches
features along this axis (or, equivalently, compresses them
in the orthogonal direction). Second, the indicatrices are
generally larger near the center of the space, where one or
both of the joint angles are zero. Physically, these observations
correspond to the system meeting less resistance from the fluid
when moving the joints together, rather than oppositely; even
actions or those starting from large joint angles tend to push
the links laterally (in the high-drag direction); in odd motions,
the drag torques induced in response to a given joint tend to
“help” the motion of the other joints.

D. Optimal Projections

Altering a map projection to de-identify the latitude and lon-
gitude from the xy coordinates of the paper can significantly
reduce the distortion. Conical projections, such as the one at

the top right of Fig. 3, preserve distances and orthogonality
over much of their domain, as reflected in the uniform size and
near-circularity of the Tissot indicatrices. Distortion appears
only very close to the singularity at the north pole, and is
much less severe than in the equirectangular projection.

Several metrics are available for evaluating projections,
based on how well they preserve linear distance, orthogo-
nality, and area. Of these, there are strong cartographical
arguments [2] for using linear distance as a primary criterion
for map quality; such a metric also fits well with our goal of
finding a projection of the shape space that best preserves the
distance metric in (12). There are two general categories of
linear-distance criteria [2]: Tissot criteria, based on the ratio
between largest and smallest indicatrix axes in the domain,
and Airy criteria, that consider the average squared stretch
over the domain.

Cartographers optimizing maps for these criteria typically
make use of the (oblate) spherical nature of the earth.
The mathematical “purity” of this shape makes it relatively
straightforward to project from the globe onto a cylindrical
or conical surface, and then to optimize the placement of this
surface to minimize the distortion. The natural form of the
shape space, defined by the power metric M,, is considerably
more complicated and does not readily admit such geometrical
approaches. Instead, we have developed a numerical approach
for finding the change of coordinates that best inverts the
stretches illustrated by Tissot’s indicatrix.

In this approach, we treat the shape space as an elastic
sheet with pre-existing internal strains (the Tissot stretches)
and allow it to relax into a minimum-energy configuration.
This relaxation corresponds to optimizing an Airy criterion, in
that the strain energy in the sheet corresponds to the squared



TABLE I: Distortion metrics

System Tissot Criterion Jordan Criterion

critp crit s equiv. ratio
Map, equirectangular 5.3367 0.1355 1.6943
Map, conical 1.7981 0.0031 1.0930
Swimmer, joint angles 3.2863 0.0667 1.4673
Swimmer, power-normed 1.2109 0.0094 1.1643

stretch. As the sheet relaxes, points specified in the starting
coordinates (e.g., latitude and longitude or the joint angles) are
pulled into new positions in which the inter-point distances are
as consistent with the preferred distance metric (e.g., distance
on a sphere, power dissipation) as is possible while remaining
in the plane. Taking the zy coordinates of this plane as our
new parameterization then gives a basis that better matches
the metric, which we can convert into our original coordinates
as needed by inverting the relaxation transform.

Applying this procedure (the details of our implementation
are given below) to a map initially plotted as an equi-
rectangular projection pinches in the pole and curves the
lines of constant latitude in the same manner as the conical
projection, and the “conical projection” in the top right image
of Fig. 3 is actually the product of our relaxation algorithm.
For the swimmer, coordinate relaxation has the effect of
“scissoring” the primary « axes together, extending the first
and third quadrants while minimally affecting the second and
fourth quadrants, as shown at the bottom right of Fig. 3.

Table I quantifies the efficacy of these coordinate changes
by means of both the Tissot criterion for maximum stretch
ratio, crity = Ty max /Tgmn and the Jordan form [2] of the
Airy criterion for average stretch, the details of which are
in the appendix. Included with those criteria are the constant
indicatrix aspect ratio that would produce the same Jordan
value. For the swimmer, relaxing the parameterization has
reduced the maximum stretch in the figure from 229% to 21%
and the average stretch at any location from 47% to 16%.

We should note that some previous efforts, in particular [17],
have made preliminary use of a dissipation-based metric on the
shape space for low Reynolds number swimming. In that work,
however, the change from joint angles to power-based distance
measures was only made locally, by (in our terminology)
multiplying the constraint curvature by det(7~!) at each
pair of joint angles. This approach works for differential
oscillations, but the variations in 7" across the space (which
we balance via our elastic relaxation process) prevent it from
being a viable means of representing large-scale locomotive
efficiency.

E. Numerical approach

We implement the coordinate relaxation process on an
eight-connected network of springs evenly distributed over the
starting parameter space. This network naturally decomposes
into cells containing four nodes and six springs, as illustrated
in Fig. 4(a). Within each cell, we find the natural length
of the springs by approximating the deformation as constant
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Fig. 4: Components of the numerical algorithm.

over the cell and transforming the nodes by the inverse of
the Tissot transformation matrix: as shown in Fig. 4(b), the
nodes have been brought onto the local unit circle from their
natural positions (according to the preferred metric) by the
same transformation 7' that maps the unit circle to Tissot’s
indicatrix. Inverting this transform reverts them to their natural
positions, where the inter-node distances give the resting
spring lengths (i.e., a linearized approximation to the metric-
defined distances between the nodes). For springs that are
shared between two cells, we average the lengths found.

Once the spring lengths have been found, a variety of
methods are available for minimizing the residual energy. Our
results here are based on assigning equal linear stiffnesses to
each spring and linear damping at the nodes, then integrating
forward in time until the system reaches equilibrium. Refine-
ments to this approach that we are presently investigating
include finite element methods to directly locate equilibria,
nonlinear springs, and emphasizing targeted regions of the
parameter space via variations in stiffness.

F. Optimal stroke in new coordinates

Figure 5 shows the optimal strokes from [7] plotted in
the power normalized shape coordinates r,, along with the
x component of the curvature function. Immediately, we can
see that the cost savings in the maximum-efficiency stroke
(as compared to the maximum-displacement stroke) are much
greater than they appeared in the original coordinates: the
difference is along the even axis, and so accounts for a propor-
tionally larger share of the arclength in the new coordinates.
Interestingly, the double-well feature previously noted in the
x curvature function is absent here, suggesting that it was an
artifact of the joint-angle parameterization.

This representation also provides some intuition behind
the constant-power nature of optimal pacing: slowing down
any one segment requires a corresponding increase in speed
elsewhere in the stroke. As the distance metric is quadratic in
power, the increase will always cost more than was gained by
slowing down, with little opportunity for arbitrage by speeding
up in a low-cost region.

IV. OTHER SHAPE MODES

The geometric principles outlined above do not depend
on the three-link nature of the swimmer, and are applicable
for any shape parameterization (including flexible systems
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Fig. 5: Optimal strokes and x curvature in power-normalized coordinates.

and highly-articulated systems with coupled joint angles); the
prominence of three-link systems in the literature is chiefly
a matter of convenience. For systems with disparate shapes,
comparisons of locomotive efficiency have largely relied on
first finding the optimal strokes for each system — the dif-
ferences in power costs creating difficulty in making broader
observations. Our power-normalized coordinates open a new
avenue for addressing this limitation: normalizing the coordi-
nates to matching scales encodes the efficiency comparisons
directly in the topography of the constraint curvature functions.

While a full investigation of this principle is beyond the
scope of this paper, a simple application provides some
key insight into the advantages swimming mechanisms with
smooth curvature have over those with rigid links. For the
purposes of comparison, we will consider a system whose
shape is determined by two single-period sinusoidal curvature
modes along the length of the backbone,* as shown at the
right of Fig. 6. The shape parameters a for this system corre-
spond to the amplitudes of the curvature bases x, just as the
joint angles of the three-link swimmer multiply the impulse-
function curvature bases that define an articulated system. The
overall shape produced by the net sinusoidal curvature is a
serpenoid curve [26]; this curve is rounder than a sinusoid and
has been demonstrated to closely model the motions of snakes
and other undulatory locomoting animals [26]. A serpenoid
wave of constant amplitude and phase velocity is the most
common dynamic application of such curves, and corresponds
to tracing out a circle in the (a1, a2) space with constant speed.

Power-normalizing the serpenoid amplitude coefficients, as
in Fig. 7, has similar results to those seen for the three-link
swimmer — the even mode (k1) costs more to actuate than
the odd mode (k2), and the sign-definite region at the center
of the x constraint curvature function is longer in the even
direction than the odd direction. Comparing the magnitudes
of the curvature functions, however, reveals the advantage
held by the serpenoid swimmer. First, the = curvature for
the continuous modes has a peak magnitude more than twice
that of the rigid-link swimmer, indicating that the serpenoid
swimmer is considerably more efficient when locomoting via

4Note that this (physical) curvature of the backbone is distinct from the
(abstract) curvature of the constraint functions.
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Fig. 7: Power-normalized projection of the serpenoid swimmer’s x constraint
curvature and a constant-amplitude serpenoid wave. Tissot distortion in this
plot is 1.21, Jordan-equivalent distortion is 1.07.

differential oscillations. Second, the optimal strokes for this
serpenoid curve are significantly more compact than the rigid-
link stroke, providing an improved perimeter-to-area ratio.

Stroke lengths and net x displacements for the three-link and
serpenoid swimmers are compared in Table II. These numbers
for unit drag on body lengths of six units, corresponding
to the unit link half-length in [7], [19], and scale with
length as indicated in the table. The stroke presented for the
serpenoid system is the serpenoid wave that just crosses into
the negative regions of the curvature function; this stroke is
optimal over the serpenoid waves, though small performance
increases could likely be gained by using a higher-order stroke
model as in [7]. Even without such optimizations, however,
the serpenoid swimmer significantly outperforms the three-
link system, generating over three times the displacement per
unit of effort. Physically, this corresponds to the rigid system
taking three times as long to cross a given distance at equal
power (and thus three times as much energy), or nine times
the power and energy to travel the distance in the same time
as the serpenoid swimmer.

A second interesting observation regarding the serpenoid
stroke in Fig. 7 is that the compression of the odd axis
suggests the use of non-uniform pacing in the serpenoid
wave. Following the ellipse with constant speed corresponds
to accelerating the wave when the odd mode is changing,
taking advantage of the lower fluid resistance to this motion.
We believe that such pacing questions have not yet been
investigated in the serpenoid literature, opening another avenue
of future work.



TABLE II: Stroke efficiencies

Quantity Three-link | Serpenoid | Length scaling
Stroke length sp, 24.26 9.33 L3
Net z displacement 0.61 0.85 L
Displacement per sj 0.03 0.09 L2

V. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper is the first to apply
cartographic distortion analysis to kinematics and locomotion.
By unifying these two branches of differential geometry, we
have found coordinate representations that usefully encode
notions of distance and effort. These coordinates increase the
tractability of several motion planning questions and enable
simple and direct comparison of distinctly heterogeneous
locomoting systems. In developing these coordinate repre-
sentations, we introduced a new metric for low Reynolds
number actions that allows pacing-free comparisons of the
effort required to move along different trajectories.

Looking forward, we see many opportunities to extend the
paradigm introduced here. This work will include an expansion
of the stroke comparisons in §IV (considering both richer
shape modes [27] and trajectories [7]), investigations into
distance metrics for other physical regimes or that incorporate
internal dynamics [28], and applications to other areas, such
as even sampling of the shape space or proper computation of
system manipulability metrics. Alongside this work, we will
continue to develop its theoretical underpinnings, especially
the effects of using different metrics in the elastic relaxation
process, implementations in higher dimensions, and a more
fully differential-geometric presentation of the principles.

We thank Anette Hosoi, Lisa Burton, Matthew Tesch, and
Glenn Wagner for many insightful discussions, and the NSF
for support via Grant 1000389.

APPENDIX: JORDAN CRITERION

The Jordan criterion [2] measures the average linear distor-
tion of a projection in all directions, and is calculated as

crit; = %//Q (;ﬂ /O%(R(G)) —1)2 d@) : (15)

where (2 is the region of area A under consideration, and

R(©®) =77/ (meanQ(T)\/Tl2 sin® © + 73 cos? @) (16)

is the radius of the Tissot indicatrix at an angle © from the
major axis, normalized by the mean stretch over the domain.
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